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(E325A) COMPILER DESIGN 
(Common to CSE, ECM) 

Course Objectives: 

Student will: 

1. Understand the major concept areas of language translation and compiler design. 
2. Enrich the knowledge in various phases of compiler ant its use, code optimization 

techniques, machine code generation, and use of symbol table. 

3. Extend the knowledge of parser by parsing LL parser and LR parser. 

4. Implement the concepts of semantic analysis using semantic rules. 

5. Apply the knowledge of data flow analysis and object code generation. 

UNIT – I: 

Overview of Compilation: 

Phases of Compilation – Lexical Analysis, Regular Grammar and regular expression for 

common programming language features, pass and Phases of translation, 
interpretation, bootstrapping, data structures in compilation – LEX lexical analyzer generator. 

UNIT – II: 

Top down Parsing: Context free grammars,  Top down parsing – Backtracking, LL (1), 

recursive descent parsing, Predictive parsing, Preprocessing steps required for predictive 

parsing. 

Bottom up parsing: Shift Reduce parsing, SLR,CLR and LALR parsing, Error recovery in 

parsing , handling ambiguous grammar, YACC –automatic parser generator. 

UNIT – III: 

Semantic analysis: Intermediate forms of source Programs – abstract syntax tree, polish 

notation and three address codes. Attributed grammars, Syntax directed translation, 

Conversion of popular Programming languages language Constructs into Intermediate code 

forms, Type checker. 

UNIT – IV 

Symbol Tables: Symbol table format, organization for block structures languages, hashing, 

tree structures representation of scope information. Block structures and non block structure 

storage allocation: static, Runtime stack and heap storage allocation, storage allocation for 

arrays, strings and records. 

Code optimization: Consideration for Optimization, Scope of Optimization, local 

optimization, loop optimization, frequency reduction, folding, DAG representation. 

UNIT – V: 

Data flow analysis: Flow graph, data flow equation, global optimization, redundant sub 

expression elimination, Induction variable elements, Live variable analysis, Copy propagation. 

Object code generation: Object code forms, machine dependent code optimization, register 

allocation and assignment generic code generation algorithms, DAG for register allocation. 



 
 

TEXT BOOKS : 

1. Principles of compiler design -A.V. Aho . J.D.Ullman; Pearson Education. 

2. Modern Compiler Implementation in C- Andrew N. Appel, Cambridge University Press. 

REFERENCES BOOKS: 

1. lex &yacc – John R. Levine, Tony Mason, Doug Brown, O’reilly 

2. Modern Compiler Design- Dick Grune, Henry E. Bal, Cariel T. H. Jacobs, Wiley dreamtech. 

3. Engineering a Compiler-Cooper & Linda, Elsevier. 

Course Outcomes: 

At the end of course student will able to: 

1. Design a Lexical Analyzer. 

2. Compare different types of parsing techniques 

3. Describe the concepts of Semantic analysis and type checking. 

4. Derive a Intermediate code from source code. 
5. Apply different code optimization and code generation techniques. 



Compiler Design: Introduction 
  

 
 
 

 

 

UNIT-1: Mind Map Syllabus 

Overview of Compilation: 

Phases of Compilation – Lexical Analysis, Regular Grammar and regular expression for 

common programming language features, pass and Phases of translation, interpretation, 

bootstrapping, data structures in compilation – LEX lexical analyzer generator. 
 
 

Compiler: 

 It is a software which converts a program written in high level language (Source Language) to

low level language (Object/Target/Machine Language). 

 The source code is translated to object code successfully 

if it is free of errors.

  The compiler specifies the errors at the end of 

compilation with line numbers when there are any 

errors in the source code.

SOURCE PROGRAM 
 

 

 

 

 

 

 

 
 

TARGET PROGRAM 
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Interpreter : 

 The translation of single statement of source program into machine code is done by language 

processor and executes it immediately before moving on to the next line is called an 

interpreter.

 If there is an error in the statement, the interpreter terminates its translating process at that

statement and displays an error message. 

 The interpreter moves on to the next line for execution only after removal of the error.

 An Interpreter directly executes instructions written in a programming or scripting 

language without previously converting them to an object code or machine code.

Assembler: 

 The Assembler is used to translate the program written in Assembly language into machine

code. 

 The source program is a input of assembler that 

contains assembly language instructions.

 The output generated by assembler is the object

code or machine code understandable by the computer. 

ASSEMBLY CODE 
 

 

 

 

 

 

 

 
 

MACHINE CODE/OBJECT 

CODE 
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Language Processing System 
 

 

 we write programs in high-level language, which is easier for us to understand and remember. 

These programs are then fed into a series of tools and OS components to get the desired code 

that can be used by the machine. This is known as Language Processing System.

 Steps Involved in language processing:

1. User writes a program in high-level 

language(Source code). 

2. A preprocessor, generally considered 

as a part of compiler, is a tool that produces 

input for compilers. It deals with 

macro-processing, augmentation, file inclusion, 

language extension, etc. 

3.The compiler, compiles the program and translates 

it to assembly program (low-level language). 

4. An assembler then translates the assembly program 

into machine code (object). 

5.A linker tool is used to link all the parts of the program 

together for execution (executable machine code). 

6.A loader loads all of them into memory and then the 

program is executed. 3 



Phases of Compilation 
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Compiler Phases: 

 The compilation process contains the 

sequence of various phases. Each 

phase takes source program in one 

representation and produces output 

in another representation.

 Each phase takes input from its previous 

stage.

 There are two parts of Compilation:

I. Analysis (Front End) 

II. Synthesis ( Back End) 

 The Analysis part breaks the source 

program into constituent pieces and 

creates an intermediate representation 

of source program.



Phases of Compilation... 
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 The Synthesis part Construct the desired target program from the Intermediate

representation. 

 

 

 

 The different phases of compiler are:

1. Lexical analysis 

2. Syntax analysis 

3. Semantic analysis 

4. Intermediate code generator 

5. Code optimizer 

6. Code generator 

 All of the above mentioned phases involve the following tasks:

 Symbol table management.

 Error handling.



Phases of Compilation... 
 

 

 

Lexical Analysis: 

 Lexical analysis is the first phase of compiler which is also termed as scanning.

 Source program is scanned to read the stream of characters and those characters are grouped to 

form a sequence called lexemes which produces token as output.

 Token: Token is a sequence of characters that represent lexical unit, which matches with the

pattern, such as keywords, operators, identifiers etc. 

 Lexeme: Lexeme is instance of a token i.e., group of characters forming a token. 

Example: Pi=3.14,here string Pi is a lexeme for the token “identifier”

 Pattern: Pattern describes the rule that the lexemes of a token takes. It is the structure that must 

be matched by strings.

 Once a token is generated the corresponding entry is made in the symbol table.

 Example : c=a+b*5
 

 

 

 

 

 

 

 

 

 

 

 

 

6 

 Output of LA is <id1>=< id2> +<id3 > * 5

Lexemes Tokens 

c Identifier id1 

= assignment symbol 

a Identifier id2 

+ + (addition symbol) 

b Identifier id3 

* * (multiplication symbol) 

5 5 (number) 

 



Phases of Compilation... 
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Syntax Analysis: 

 Syntax analysis is the second phase of compiler which is also called as parsing.

 Parser converts the tokens produced by lexical analyzer into a tree like representation called

parse tree. 

 A parse tree describes the syntactic structure of the input.

 Syntax tree is a compressed representation of the parse tree in which the operators appear as 

interior nodes and the operands of the operator are the children of the node for that 

operator.

Input: Tokens 

Output: Parse Tree 



Phases of Compilation... 
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Semantic Analysis: 

 Semantic analysis is the third phase of compiler.

 It checks for the semantic consistency.

 Type information is gathered and stored in symbol table or in syntax tree.

 Performs type checking.
 

 
 



Phases of Compilation... 
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Intermediate Code Generation: 

Intermediate code generation produces intermediate representations for the source program which 

are of the following forms: 

 Postfix notation

 Three address code

 Syntax tree

 Most commonly used form is the three address code.

t1 = inttofloat (5) 

t2 = id3* t1 

t3 = id2 + t2 

id1 = t3 

 Three address code is a type of intermediate code which is easy to generate and can be 

easily converted to machine code.

 It makes use of at most three addresses or operands and one operator to represent an 

expression and the value computed at each instruction is stored in temporary variable 

generated by compiler.



Phases of Compilation... 
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Code Optimization: 

 Code optimization phase gets the intermediate code as input and produces optimized 

intermediate code as output.

 It can be done by reducing the number of lines of code for a program.

 During the code optimization, the result of the program is not affected.

t1 = id3* 5.0 

id1 = id2 + t1 

Code Generation: 

 Code generation is the final phase of a compiler.

 It gets input from code optimization phase and produces the target code /object code as result.

 Intermediate instructions are translated into a sequence of machine instructions or assembly 

code that perform the same task.

LDF R2, id3 

MULF R2, #5.0 

LDF R1, id2 

ADDF R1, R2 

STF id1, R1 



Phases of Compilation... 
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Symbol Table Management: 

 Symbol table is used to store all the information about identifiers used in the program.

 It is a data structure containing a record for each identifier, with fields for the attributes of the 

identifier.

 It allows finding the record for each identifier quickly and to store or retrieve data from that

record. 

 Whenever an identifier is detected in any of the phases, it is stored in the symbol table.

Error Handling: 

 Each phase can encounter errors. After detecting an error, a phase must handle the error so that 

compilation can proceed.

 In lexical analysis, errors occur in separation of tokens.

 In syntax analysis, errors occur during construction of syntax tree.

 In semantic analysis, errors may occur at the following cases:

(i) When the compiler detects constructs that have right syntactic structure but no meaning 

(ii) During type conversion. 
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Phases of Compilation 

Example 1: Write the output for all the phases of compiler. 

Prepared by D HIMAGIRI 
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Phases of Compilation 

Example 2: 



 

 

Regular Expressions& Regular Grammars 

 The lexical analyzer needs to scan and identify only a finite set of valid string/token/lexeme

that belong to the language . 

 It searches for the pattern defined by the language rules.

 Regular expressions have the capability to express finite languages by defining a pattern for 

finite strings of symbols.

 The grammar defined by regular expressions is known as regular grammar. The language

defined by regular grammar is known as regular language. 

 Representing valid tokens of a language in regular expression

If x is a regular expression, then: 

 x* means zero or more occurrence of x. i.e., it can generate { e, x, xx, xxx, xxxx, … }

 x+ means one or more occurrence of x. i.e., it can generate { x, xx, xxx, xxxx … } or x.x*

 x? means at most one occurrence of x i.e., it can generate either {x} or {e}.

 [a-z] is all lower-case alphabets of English language.

 [A-Z] is all upper-case alphabets of English language.

 [0-9] is all natural digits used in mathematics.

 Representing occurrence of symbols using regular expressions

 letter = [a – z] or [A – Z]

 digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 or [0-9]
14 

 sign = [ + | - ]



 

 

Regular Expressions& Regular Grammars... 

 Representing language tokens using regular expressions

Decimal = (sign)?(digit)+ 

Identifier = (letter)(letter | digit)* 

 The only problem left with the lexical analyzer is how to verify the validity of a regular 

expression used in specifying the patterns of keywords of a language. A well-accepted solution 

is to use finite automata for verification.

Finite automata: 

 Finite Automata(FA) is the simplest machine to recognize patterns.

 The finite automata or finite state machine is an abstract machine which have five elements or 

tuple .

 It has a set of states and rules for moving from one state to another but it depends upon the 

applied input symbol. Basically it is an abstract model of digital computer.

 A Finite Automata is a 5-tuple Machine M={ Q, Σ, q, F, δ } :

Q : Finite set of states. 

Σ : set of Input Symbols. 

q : Initial state. 

F : set of Final States. 

δ : Transition Function. 15 



Finite Automata... 
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FA is characterized into two types: 

1) Deterministic Finite Automata (DFA) 

2) Nondeterministic Finite Automata (NFA) 

Deterministic Finite Automata (DFA) : 

 DFA refers to Deterministic Finite Automaton.

 A Finite Automata(FA) is said to be deterministic, if corresponding to an input

symbol, there is single resultant state i.e. there is only one transition. 

 A deterministic finite automata is set of five tuples and represented as:

M = (Q, Σ, qo, F, δ) 

Where, 

Q – Non Empty finite set of states 

Σ – Non Empty finite set of input symbols 

qo – Start/Initial state 

F – set of final states 

δ – Transition function 

δ :Q x Σ → Q 



Finite Automata... 
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Non -Deterministic Finite Automata (NFA) : 

 NFA refers to Nondeterministic Finite Automaton.

 A Finite Automata(FA) is said to be non deterministic, if there is more than one 

possible transition from one state on the same input symbol.

 A non deterministic finite automata is also set of five tuples and represented as:

M = (Q, Σ, qo, F, δ) 

Where, 

Q – Non Empty finite set of states 

Σ – Non Empty finite set of input symbols 

qo – Start/Initial state 

F – set of final states 

δ – Transition function 

δ :Q x Σ → 2Q
 

NFA 



NFA to DFA Conversion 
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Let, M = (Q, ∑, δ, q0, F) is an NFA which accepts the language L(M). There should be equivalent 

DFA denoted by M' = (Q', ∑', q0', δ', F') such that L(M) = L(M'). 

Steps for converting NFA to DFA: 

Step 1: Initially Q' = ϕ 

Step 2: Add q0 of NFA to Q'. Then find the transitions from this start state. 

Step 3: In Q', find the possible set of states for each input symbol. If this set of states is not in Q', 

then add it to Q'. 

Step 4: In DFA, the final state will be all the states which contain F(final states of NFA) 

Convert the NFA to DFA: 

 

 
Transition table for given NFA is 

 

State 0 1 

→q0 {q0, q1} {q1} 

*q1 ϕ {q0, q1} 



 

 

NFA to DFA Conversion...  
 

DFA Transition table 

 

 

 

 

 

 

 
DFA : 

 

 
 

As in the given NFA, q1 is a final state, then in DFA wherever, q1 exists that state 

becomes a final state. Hence in the DFA, final states are [q1] and [q0, q1]. Therefore set 

of final states F = {[q1], [q0, q1]}. 19 

State 0 1 

→[q0] [q0, q1] [q1] 

*[q1] ϕ [q0, q1] 

*[q0, q1] [q0, q1] [q0, q1] 

 



20 

 

 

ε- NFA 

ε- NFA:NFA with ε-Moves 

It is a five tuple Machine and represented as: 

M = (Q, Σ, qo, F, δ) 

Where, 

Q – Non Empty finite set of states 

Σ – Non Empty finite set of input symbols 

qo – Start/Initial state 

F – set of final states 

δ – Transition function 

δ :Q x ΣU{ε} → 2Q 

Epsilon Closure: 

Epsilon closure for a given state X is a set of states which can be reached from the states X with 

only (null) or ε moves including the state X itself. 

Example: 

∈ closure(A) : {A, B, C} 

∈ closure(B) : {B, C} 

∈ closure(C) : {C} 
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ε- NFA to NFA without ε moves 

Steps for converting ε- NFA to NFA without ε moves: 

Step-1: Find the ε-closure of the states qi where qi ∈Q 

Step-2:Find the Extended transition function as 
 

repeat this for each input symbol. 

Step-3 :Draw the transition table and diagram using resultant transitions. 

Step-4: if the ε-closure of the state contains the final state of ε- NFA then make the state as 

final. 

 
Problem: Convert ε- NFA to NFA 

a b c 
 

 
Start q 


r 


s 

ˆδ(q0, ε ) = ε-closure(q0) 

ˆδ(q0, a) = ε-closure(δ(ˆδ(q0, ε ) ,a)) 



 

 

ε- NFA to NFA without ε moves... 

Step 1: Find ε closures 

ε closure(q)= {q,r,s} a b c 

ε closure(r)= {r,s} 

ε closure(s)= {s} 

Step 2: Find δ for all states 

δ’(q,a)= ε closure (δ(δ’(q, ε),a)) 

Start 

= ε closure (δ(ε closure(q),a)) 

= ε closure(δ((q,r,s),a)) 

= ε closure (δ(q,a) U δ(r,a) U δ(s,a) ) 

= ε closure (q U θ U θ ) 

= ε closure (q) 

= {q,r,s} 

δ’(q,b)= ε closure (δ(δ’(q, ε),b)) 

= ε closure (δ(ε closure(q),b)) 

= ε closure(δ((q,r,s),b)) 

= ε closure (δ(q,b) U δ(r,b) U δ(s,b) ) 

= ε closure (θ Ur U θ ) 

= ε closure (r) = {r,s} 

q 


r 


s 



 

 

q 


r 


s 

ε- NFA to NFA without ε moves... a b c 
 

δ’(q,c)= ε closure (δ(δ’(q, ε),c)) 
 

Start 

= ε closure (δ(ε closure(q),c)) 

= ε closure(δ((q,r,s),c)) 

= ε closure (δ(q,c) U δ(r,c) U δ(s,c) ) 

= ε closure (θ U θ U s ) 

= ε closure (s) 

= {s} 

δ’(r,a)= ε closure (δ(δ’(r, ε),a)) 

= ε closure (δ(ε closure(r),a)) 

= ε closure(δ((r,s),a)) 

= ε closure (δ(r,a) U δ(s,a) ) 

= ε closure (θ U θ) = θ 

δ’(r,b) = ε closure (δ(δ’(r, ε),b)) 

= ε closure (δ(ε closure(r),b)) 

= ε closure(δ((r,s),b)) 

= ε closure (δ(r,b) U δ(s,b) ) 

= ε closure (r U θ ) = ε closure (r ) ={r,s} 



ε- NFA to NFA without ε moves... 
 

 

 

δ’(r,c)= ε closure (δ(δ’(r, ε),c)) 

= ε closure (δ(ε closure(r),c)) 

= ε closure(δ((r,s),c)) 

= ε closure (δ(r,c) U δ(s,c) ) 

= ε closure (θ U s ) 

= ε closure (s) 

= {s} 

δ’{s,a}= ε closure (δ(δ’(s, ε),a)) 

=ε closure (δ(s,a)) 

= ε closure (θ ) 

= θ 

δ’{s,b}= ε closure (δ(δ’(s, ε),b)) 

=ε closure (δ(s,b)) 

= ε closure (θ )  = θ 

δ’{s,c}=ε closure (δ(δ’(s, ε),c)) 

=ε closure (δ(s,c) ) 

= ε closure (s ) = {s} 

a b c 

 
Start q 


r 


s 



ε- NFA to NFA without ε moves... 
 

 

 
 

Step 3: Draw transition table and diagram for all 

new states 

Let, 

(q,r,s)= D 

(r,s) =E 

s =F 

Step 4: Final states are D,E and F. 
 
 
 
 

 

NFA without ε moves: 
 

 a b c 

->*D D E F 

*E θ E F 

*F θ θ F 

 



ε- NFA to DFA 

Conversion of ε- NFA to DFA : 

 

 

Let the DFA be D and its transition table be Dtrans, Dstates represents states of the DFA and N be 

the NFA. 

1. Initially , ∈ closure(s) is the only state in Dstates and it is Unmarked. 

2. While there is an Unmarked state T in Dstates do 

begin 

Mark T 

for each input symbol “a” do 

begin 

U= ∈ closure(δ( T, a)) 

if U is not in Dstates then 

add U as an Unmarked state to DState 

Dtrans[T , a]=U 

End 
 

End 
26 



ε- NFA to DFA 

Conversion of ε- NFA to DFA : 
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ε- NFA to DFA 

Conversion of ε- NFA to DFA : 
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ε- NFA to DFA 

Conversion of ε- NFA to DFA : 
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ε- NFA to DFA 

Conversion of ε- NFA to DFA : 
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ε- NFA to DFA 

Conversion of ε- NFA to DFA : 
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Converting RE to NFA 

Conversion of RE to NFA ( Thompson Construction) 
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Converting RE to NFA 

Conversion of RE to NFA ( Thompson Construction) 
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Converting RE to NFA 
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Problem: Convert the RE (ab*c)/ (a(b/c*)) to NFA 
 



Converting RE to NFA 

Convert the RE (ab*c)/ (a(b/c*)) to NFA 
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Converting RE to NFA 

Convert the RE (ab*c)/ (a(b/c*)) to NFA 
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Pass and Phases of Translation 

 A compiler can have many phases and passes.

 Pass : A pass refers to the traversal of a compiler through the entire program.

 Phase : A phase of a compiler is a distinguishable stage, which takes input from the previous 

stage, processes and yields output that can be used as input for the next stage.

 Compiler pass are two types:

1. Single Pass Compiler 

2. Two Pass Compiler or Multi Pass Compiler. 

Single Pass Compiler(Narrow Compilers): 

 If we combine or group all the phases of compiler 

design in a single module known as single pass 

compiler.

 A one pass/single pass compiler is that type of 

compiler that passes through the part of each 

compilation unit exactly once.

 Single pass compiler is faster and smaller than

the multi pass compiler. 

 As a disadvantage of single pass compiler is that 

it is less efficient in comparison with
37 



 

 

multipass compiler. 
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Pass and Phases of Translation... 

Multipass Compiler( Wide Compilers): 

 A Two pass/multi-pass Compiler is a type of compiler that processes the source code of a 

program multiple times. In multipass Compiler we divide phases in two pass as:

 In first pass the included phases are as Lexical analyzer, syntax analyzer, semantic analyzer, 

intermediate code generator are work as front end.

  First pass is platform independent because the 

output of first pass is as three address code 

which is useful for every system .

 In second Pass the included phases are as

Code optimization and Code generator are work 

as back end and the synthesis part refers to 

taking input as three address code and convert 

them into Low level language/assembly language 

and second pass is platform dependent because 

final stage of a typical compiler converts the 

intermediate representation of program into an 

executable set of instructions which is dependent on the system. 



Bootstrapping 
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 Bootstrapping is widely used in the compilation development.

 It is a process in which simple language is used to translate more complicated program 

which in turn may handle for more complicated program. This complicated program can 

further handle even more complicated program and so on.

 It is used to produce a self-hosting compiler.

 Self-hosting compiler is a type of compiler that can compile its own source code . i.e.

a compiler written in the source programming language that it intends to compile. 

 A compiler can be characterized by three languages:

1) Source Language 

2) Target Language 

3) Implementation Language 

 The T- diagram shows a compiler SC T for Source S, Target T, implemented in I.

 Cross Compiler is a compiler which runs on one machine and produces output for another 

machine.



LEX 
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LEX: 

 Lex is a program that generates lexical analyzer.

 It is a Unix utility.

 The lexical analyzer is a program that transforms an input stream into a sequence of 

tokens.

 Lex specifies tokens using Regular Expression.

The function of Lex is as follows: 

1. Firstly lexical analyzer creates a program called lex specification file , lex.l in the Lex 

language. Then Lex compiler runs the lex.1 program and produces a C program lex.yy.c. 

2. Finally C compiler runs the lex.yy.c program and produces an object program a.out. 

3. a.out is lexical analyzer that transforms an input stream into a sequence of tokens. 



LEX... 
 

 

 

The structure of LEX programs: 

%{ 

Declarations 

%} 

%% 

Rules 

%% 

Auxiliary Functions 

Declaration Section: 

 The declarations section consists of two parts, auxiliary declarations and regular definitions.

 The auxiliary declarations are copied as such by LEX to the output lex.yy.c file. This C code 

consists of instructions to the C compiler and are not processed by the LEX tool.

 The auxiliary declarations (which are optional) are written in C language and are enclosed 

within ' %{ ' and ' %} ' .

 It is generally used to declare functions, include header files, or define global variables and

constants. 

 LEX allows the use of short-hands and extensions to regular expressions for the regular 

definitions. A regular definition in LEX is of the form : D R where D is the symbol
41 

representing the regular expression R. 



LEX... 
 

 

 

Rules: 

 Rules in a LEX program consists of two parts :

1. The pattern to be matched 

2. The corresponding action to be executed 

 Patterns are defined using the regular expressions and actions can be specified using C Code.

 The Rules can be given as

R1 {Action1} 

R2 {Action2} 

. 

. 

. 

Rn {Action n} 

Where Ri is RE and Action i is the action to be taken for corresponding RE. 

Auxiliary Functions: 

 All the required procedures are defined in this section.

 
Note: Function yywrap is called by lex when input is exhausted. When the end of the file is 

reached the return value of yywrap() is checked. If it is non-zero, scanning terminates and if it is 

0 scanning continues with next input file. 
42 



LEX... 
 

 

 

Lex Program for count tokens in source program: 

 
 

Note: yylex() match the characters with the regular expression. 43 
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UNIT – II: 

Top down Parsing: Context free grammars, Top down parsing – Backtracking, LL (1), 

recursive descent parsing, Predictive parsing, Pre-processing steps required for 

predictive parsing. 

Bottom up parsing: Shift Reduce parsing, SLR,CLR and LALR parsing, Error 

recovery in parsing , handling ambiguous grammar, YACC –automatic parser generator. 
 

 

Role of a Parser: 
 
 



Parsing 
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 A syntax analyzer is also known as parser.

 A parser takes input in the form of a sequence of tokens from Lexical Analyzer and builds a 

data structure in the form of a parse tree.

 It verifies whether the string can be generated by the grammar for the source language.

 It also returns any syntax error for the source language.

 A parser for a grammar G is a program that takes input as a string s and produces an output

either, 

 A parser tree for s, if s is a sentence of G or 

 An error message indicating that s is not a sentence of G 

Types of Parsers: 

1. Top down Parsers 

2. Bottom up Parsers 

 Top down parser builds the parse tree from root 

to leaves.

 Bottom up parser builds the parse tree from 

leaves to root.

 In both the cases input is scanned from left to right 

one symbol at a time.

Bottom up 
Parser 

Top Down 
Parsers 

Parsers 
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Context Free Grammar (CFG) 

 A context-free grammar (CFG) consisting of a finite set of grammar rules is a quadruple

G=(V, T, P, S) 

where 

V is a set of non-terminal . 

T is a set of terminals. 

P is a set of Production rules, 

P: V → (V 𝖴 T)* 

S is the start symbol. 

 A context-free grammar is a set of recursive rules used to generate patterns of strings.

 The language generated using Context Free Grammar is called as Context Free Language.

Example: 

G = (V , T , P , S) 

Where, 

V = { S } 

T = { a , b } 

P = { S → aSbS , S → bSaS , S → ∈ } 

S = { S } 



4 

 

 

Parse Tree/ Syntax Tree/ Derivation Tree 

Parse Tree: 

 The diagrammatical representation of a derivation is called as a parse tree or derivation tree.

 Root node of a parse tree is the start symbol of the grammar.

 Each leaf node of a parse tree represents a terminal symbol.

 Each interior node of a parse tree represents a non-terminal symbol.

 Concatenating the leaves of a parse tree from the left produces a string of terminals, called

as yield of a parse tree. 

Example: 

Construct Parse tree for the string w=a+a+a 

G: 

E → E+E | E*E |E| a 
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Derivations 

Derivation:Starting with the start symbol, non-terminals are rewritten using productions rules 

until only terminals remain. 

There are two types of derivations: 

1.Left Most Derivations(LMD) 

2.Right Most Derivations( RMD) 

Left Most Derivations (LMD): 

A left most derivation is obtained by applying rule of 

production to the left most variable/ non terminal in 

each step of derivation. 

Example: 

Let any set of production rules in a CFG be 

X → X+X | X*X |X| a 

The leftmost derivation for the string "a+a*a" is 

X → X+X X →a 

→ a+X X →X*X 

→ a + X*X X →a 

→ a+a*X X →a 

→ a+a*a 



Derivations... 
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Right Most Derivations (LMD): 

A right most derivation is obtained by applying rule of production to the right most variable/ non 

terminal in each step of derivation. 

Example: 

Let any set of production rules in a CFG be 

X → X+X | X*X |X| a 

The leftmost derivation for the string "a+a*a" is 

X → X*X X →a 

→ X*a X →X+X 

→ X+X*a X →a 

→ X+a*a X →a 

→ a+a*a 



Derivations... 
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Example: 

Consider the following grammar 

G: 

S → aB / bA 

A→ aS / bAA / a 

B->bS/aBB/b 

find LMD,RMD for string w = aaabbabbba 

LMD: 

S → aB 

→ aaBB (Using B → aBB) 

→ aaaBBB (Using B → aBB) 

→ aaabBB (Using B → b) 

→ aaabbB (Using B → b) 

→ aaabbaBB (Using B → aBB) 

→ aaabbabB (Using B → b) 

→ aaabbabbS (Using B → bS) 

→ aaabbabbbA (Using S → bA) 

→ aaabbabbba (Using A → a) 



Derivations... 
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Example: 

Consider the following grammar 

G: 

S → aB / bA 

A → aS / bAA / a 

B->bS/aBB/b 

find LMD,RMD for string w = aaabbabbba 

RMD: 

S → aB 

→ aaBB (Using B → aBB) 

→ aaBaBB (Using B → aBB) 

→ aaBaBbS (Using B → bS) 

→ aaBaBbbA (Using S → bA) 

→ aaBaBbba (Using A → a) 

→ aaBabbba (Using B → b) 

→ aaaBBabbba (Using B → aBB) 

→ aaaBbabbba (Using B → b) 

→ aaabbabbba (Using B → b) 



Ambiguous Grammar 
 

 

 

Ambiguous Grammar: 

A grammar is said to ambiguous if for any string generated by it, it produces more than one 

Parse Tree or Leftmost Derivation (LMD) or Rightmost Derivation (RMD). 

Example- 

Consider the following grammar- 

E → E + E / E x E / id 

Let w = id + id x id be string generated by G 
 

 
 

 

There fore , This grammar is an ambiguous grammar. 9 



10 

 

 

Unambiguous Grammar 

Unambiguous Grammar: 

A grammar is said to Unambiguous if for any string generated by it, it produces Exactly one 

Parse Tree or Leftmost Derivation (LMD) or Rightmost Derivation (RMD). 

Example- 

Unambiguous grammar: 

X -> AB 

A -> Aa / a 

B -> b 

Problems: 

1. Check whether the given grammar G is ambiguous or not. 

S → aSb | SS 

S → ε 

2. Check whether the given grammar G is ambiguous or not. 

A → AA 

A → (A) 

A → a 
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Left Recursive Grammars 

Left Recursive Grammar: 

 A production of grammar is said to have left recursion if the leftmost variable of its RHS is 

same as variable of its LHS.

 A grammar containing a production having left recursion is called as Left Recursive Grammar.

Example of  Left Recursive Grammar: 

G: A → ABd / Aa / a 

B → Be / b 

 Top down parsers cannot handle the Left Recursive Grammars. Therefore, left recursion has to 

be eliminated from the grammar.

Pre-processing steps in Predictive Parsing: 

1) Elimination of Left Recursion: 

If a Grammar G is a Left Recursive 

A→Aα1/ Aα2............ / Aαm /β1/β2/β3 ................ /βn 

After eliminating Left Recursion ,We get 

A→ β1A
l/β2 A

l /β3 A
l ......... /βn A

l 

Al→ α1 A
l / α2 A

l/............/ αm A
l/ ε 



 

 

Left Recursive Grammars... 

Example 1: 

Eliminate the left Recursion in the 

G: A → ABd / Aa / a 

B → Be / b 

C →c 

A → ABd / Aa / a 

After eliminating Left Recursion ,We get 

A →aAl
 

Al →Bd Al /a Al / ε 

B → Be / b 

After eliminating Left Recursion ,We get 

B →bBl
 

Bl →e Bl / ε 

 

 

 
Example 2: 

Eliminate left recursion in the Grammar 

E → E + T / T 

T → T * F / F 

F → id 

The grammar after eliminating left recursion is 

E → TE‘ 

E‘ → +TE‘ / ∈ 
T → FT‘ 

T‘ → *FT‘ / ∈ 
F → id 

Grammar After Eliminating Left Recursion is 

A →aAl
 

Al →Bd Al /a Al / ε 

B →bBl
 

Bl →e Bl / ε 
12 

C →c 



 

 

Left Factoring 

2) Left Factoring: 

 It is a grammar transformation that is useful for producing a grammar useful for predictive 

parsing.

 If A → αβ1 / αβ2 are two A-productions ,both these productions starts with same 

string in RHS , then such grammars are said to be having common prefixes.

 Left factoring is a process by which the grammar with common prefixes is transformed

to make it useful for Top down parsers. 
 

 

 

Example 1: 

Do left factoring in the following grammar- 

S → iEtS / iEtSeS / a 

E → b 

 
The left factored grammar is: 

S → iEtSS‘ / a 

S‘ → eS / ∈ 
E → b 13 
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Left Factoring... 

Example 2: 

Do left factoring in the following grammar- 

A → aAB / aBc / aAc 

Solution- 

Step 1: 

A → aA‘ 

A‘ → AB / Bc / Ac 

Again, this is a grammar with common 

prefixes. 

Step 2: 

A → aA‘ 

A‘ → AD / Bc 

D → B / c 

This is a left factored grammar. 

 

 

 
Example 3: 

Do left factoring in the following grammar- 

S → bSSaaS / bSSaSb / bSb / a 

Solution- 

Step-01: 

S → bSS‘ / a 

S‘ → SaaS / SaSb / b 

Again, this is a grammar with common 

prefixes. 

Step-02: 

S → bSS‘ / a 

S‘ → SaA / b 

A → aS / Sb 

This is a left factored grammar. 



Top Down Parsing 
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Top Down Parsers: 

 Top-down parsers build parse trees from the top (root) to the bottom (leaves).

 Top down parsers are classified as follow:
 

 

 

 

 

 

 
 

 

Backtracking: 

 Top- down parsers start from the root node (start symbol) and match the input string against 

the production rules to replace them (if matched).

 It means, if one derivation of a production fails, the syntax analyzer restarts the process using 

different rules of same production.

 This technique may process the input string more than once to determine the right production.

Top Down Parser 

LL(1) Parser 
Recursive Descent 

Parser 

Predictive 
Parsers 

Backtracking 



Backtracking... 
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Example: 

G: 

S → rXd | rZd 

X → oa | ea 

Z → ai 

and input w=―read‖ 

 

 

 
 It will start with S from the production rules and will match its yield to the left-most letter of

the input, i.e. ‗r‘. 

 The very production of S (S → rXd) matches with it. So the top-down parser advances to the 

next input letter (i.e. ‗e‘).

 The parser tries to expand non-terminal ‗X‘ and checks its production from the left (X → oa). It 

does not match with the next input symbol. So the top-down parser backtracks to obtain the next 

production rule of X, (X → ea).

 Now the parser matches all the input letters in an ordered manner. The string is accepted and 

parsing is successful.



Recursive Descent Parsing 
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Recursive Descent Parser: 

 It is a top-down parser builds the parse tree from the top to down, starting with the 

start non-terminal.

 It is a Predictive Parser where no Backtracking is required.

 In this parsing technique each non terminal is associated with a recursive procedure.

 The RHS of the production rule is directly converted to code of the respective

procedure. 

 If the RHS of production rule is containing a non terminal ,then it will invoke the respective 

procedure.

 If it is a terminal then it is matched with lookahead from the input string, lookahead pointer is 

moved one position to right if match is found.

 These procedures are responsible for matching the non terminal with next part of the input.

 If the production rule have many alternatives then all the alternatives are combined into a single 

body of the procedure.

 Since, it is a top down parsing technique the parser is activated by calling the procedure of start 

symbol.



 

 

Recursive Descent Parsing... 
 

Example: E'() 

{ 

if (lookahead == '+') 

{ 

match('+'); 

if (lookahead == ‗i') 

match('i'); 

E'(); 

} 
} 

match(char t) 

{ 

if (lookhead== t) 

{ 

lookahead = getchar(); 

} 

else 

printf("Error"); 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18 

G: 

E --> i E' 

E' --> + i E' | e 

E() 

{ 

if (lookahead == 'i') 

{ 

match('i'); 

E'(); 

} 

else if (lookahead == ‗$') 

printf("Parsing Successful"); 

else 

return error; 

} 



19 

 

 

Predictive LL(1) 

Predictive LL(1): 

 It is a non recursive top down parser.

 In LL(1), 1st L represents that the scanning of the Input from Left to Right.

 Second L shows that in this Parsing technique we are going to use Left most Derivation Tree.

 1 represents the number of look ahead, means how many symbols are going to see when

you want to make a decision. 

 The predictive parser has an input, a stack, 

a parsing table, and an output.

 The input contains the string to be parsed, 

followed by $, the right end marker.

 The stack contains a sequence of grammar 

symbols, preceded by $, the bottom-of stack 

marker.

 The Stack holds left most derivation.

 The parsing table is a two dimensional array 

M[A ,a], where A is a nonterminal, and

a is a terminal or the symbol $. 



20 

 

 

Predictive LL(1)... 

The parser is controlled by a program that behaves as follows: 

 The program determines X, the symbol on top of the 

stack, and ‗a„the current input symbol.

 These two symbols determine the action of 

the parser.

There are three possibilities: 

1. If X = a = $, the parser halts and announces 

successful completion of parsing. 

2. If X = a ≠ $, the parser pops X off the stack 

and advances the input pointer to the next 

input symbol. 

3. If X is a nonterminal, the program consults 

entry M[X, a] of the parsing table M. 

This entry will be either an X-production of the grammar or an error entry. 

 If M[X, a] = {X → UVW}, the parser replaces X on top of the stack 

by WVU (with U on top). 

 If M[X, a] = error, the parser calls an error recovery routine. 



 

 

First & Follow 

 The Construction of predictive parser is aided by two functions associated with a grammar G.

 These Functions, First and Follow allows us to fill the entries of predictive parsing table for 

grammar G

FIRST : 

Step for finding FIRST: 

1. If X is terminal, then FIRST(X) is {X} 

2. If X → ∈ is a production , then add ∈ to FIRST(X). 

3. If X is a non-terminal and X →Y1Y2..........Yk is a production, then place ‗a‘ in 

FIRST(X) if for some i,‘a‘ i.s in FIRST(Yi) and ∈ is in all of FIRST(Y1)....FIRST(Yi-1) . 

If ∈ is in FIRST(Yj) for all j=1,2,......,k then add ∈ to FIRST(X). 

 
FOLLOW: 

Step for finding FOLLOW: 

1) FOLLOW(S) = { $ } // where S is the starting Non-Terminal and $ is the input right end 

marker. 

2)  if there is a production A → αBβ ,then everything in FIRST(β) except for ∈ is placed in 

FOLLOW(B). 

3) if there is a production A → αB or a production A → αBβ where FIRST(β ) contains ∈ 
then everything in FOLLOW(A) is in FOLLOW(B). 21 



First & Follow... 

Example 1: Example 2: 
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First & Follow... 

Example 3: Example 4: 
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S → A 
A → aBA’ 
A’ → dA’ / ∈ 
B → b 
C → g 

 
First(S) = First(A) = { a } 
First(A) = { a } 
First(A’) = { d , ∈ } 
First(B) = { b } 
First(C) = { g } 

 

Follow(S) = { $ } 
Follow(A) = { $ } 
Follow(A’) = { $ } 
Follow(B) = { d , $ } 
Follow(C) = NA 

S → AaAb / BbBa 
A → ∈ 
B → ∈ 

 
First(S) = { a , b } 
First(A) = { ∈ } 
First(B) = { ∈ } 

 

Follow Functions- 
 

Follow(S) = { $ } 
Follow(A) = { a , b } 
Follow(B) = { a , b } 



LL(1) Parsing table Construction 
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Steps Involved in Predictive parsing table construction: 

Step 1: for each production A →α of the grammar do steps 2 &3 

Step 2: for each terminal ‗a‘ in FIRST(α) , add A →α to M[A , a] 

Step 3: if ∈ is in FIRST(α) , add A →α to M[A , b] for each terminal ‗b‘ in FOLLOW(A). 

Step 4: Make each undefined entry of M be Error. 

Construct LL(1) Parsing table for the grammar E  TE‟ 

G: E  E+T|T 

T  T*F|F 

F  id|(E) 

After Eliminating Left Recursion 
 

 

E‟  +TE‟| 

T  FT‟ 

T‟  *FT‟|

and Parse the string id+id*id 

Find FIRST and FOLLOW: 

F  id|(E) 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 
 

 

 

 

 

   
 

 

 
 

 

 

 

 



LL(1) Parsing table Construction 

Note: All undefined entries are Errors. 25 

 

 

 

G: E  TE‟ 

E‟  +TE‟|

T  FT‟ 

T‟  *FT‟| 

F  id|(E) 
 

 

 

 
 

 

LL(1) Parsing Table: 
 

 id + * ( ) $ 

E E  TE‘ 
  E  TE‘ 

  

E‟  E‘  +TE‘ 
  E‘   E‘  

T T  FT‘ 
  T  FT‘ 

  

T‟  T‘   T‘  *FT‘ 
 T‘   T‘  

F F  id   F  (E)   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 
 

 

 

 

 

   
 

 

 
 

 

 

 

 



Therefore , LL(1) Parsing is successful 26 

 

 

LL(1) Parsing 

Parsing the input string “id+id*id” using LL(1) parser: 

STACK INPUT OUTPUT 



LL(1) Parsing Example 
 

 

 

 Show that Grammar is not LL(1).
 

 
 

 

The entry M[S‟,e] contains multiple entries so the grammar is not LL(1) 27 



LL(1) Parsing Example 
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 Construct LL(1) Parsing table for the Grammar and parse string w= int*int

G: 

 

 
Given grammar must be converted to Left Factored Grammar 

 

 

 int * + ( ) $ 

E E->TX   E->TX   

X   X->+E  X-> X->

T T->int Y   T->(E)   

Y  Y->*T Y->  Y-> Y->

 FIRST FOLLOW 

E { ( , int } {$,)} 

X {+,  {$,)} 

T { ( , int } {+,$,)} 

Y {*,  {+,$,)} 

 



LL(1) Parsing Example 
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Parsing the string “ int*int” using parsing table 
 

 int * + ( ) $ 

E E->TX   E->TX   

X   X->+E  X-> X->

T T->int Y   T->(E)   

Y  Y->*T Y->  Y-> Y->
 

STACK INPUT OUTPUT 

$E int*int$ E->TX 

$XT int*int$ T->int Y 

$XYint int*int$ POP 

$XY *int$ Y->*T 

$XT* *int$ POP 

$XT int$ T->int Y 

$XYint int$ POP 

$XY $ Y->

$X $ X->

$ $ Accept 



Bottom Up Parsing 
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 Bottom-up parsing starts from the leaf nodes of a tree and works in upward direction till it

reaches the root node. 

 we start from a sentence or input string and then apply production rules in reverse manner 

(reduction) in order to reach the start symbol.

 The process of parsing halts successfully as soon as we reach to start symbol.

Example: 
 



Bottom Up Parsing 
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Handle: 

 It is a substring that matches the right side of the production and we can reduce such substring 

by left hand side Non-terminal of production rule.

Example: 

G: E → E + E 

E → E * E 

E → ( E ) 

E → id 

 
Bottom Up Parsers: 

 

CLR LALR SLR 

LR Parsers Shift Reduce Parser 

Bottom Up Parser 
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Shift Reduce Parser 

SR Parser: 

 Shift reduce parsing is a process of reducing a string to the start symbol of a grammar.

 Shift reduce parsing uses a stack to hold the grammar and an input tape to hold the string.

 A shift-reduce parser can possibly make the following four actions:

1. Shift: In a shift action , the next symbol is shifted onto the top of the stack. 

2. Reduce : In a reduce action , the handle appearing on the stack top is replaced with the 

appropriate non-terminal symbol. 

3. Accept : In an accept action , the parser reports the successful completion of parsing. 

4. Error : In this state , the parser becomes confused and is not able to make any decision . 

It can neither perform shift action nor reduce action nor accept action. 

 Initial Configuration of SR Parser is:

 Stack contains only the $ symbol.

 Input buffer contains the input string with $ at its end.

 The parser works by:

 Moving the input symbols on the top of the stack.

 Until a handle β appears on the top of the stack , then

handle is reduced to LHS of production rule. 



Shift Reduce Parser... 
 

 

 

 Final Configuration of SR Parser:

 Stack is left with only the start symbol and the input buffer 

becomes empty.(Successful Parsing)

 An Error is detected.(Unsuccessful Parsing).

 Example : Consider the following grammar- 

S –> S + S

S –> S * S 
S –> id and Parse the string “id + id + id” using SR Parser. 
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Shift Reduce Parser... 
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 Example : Consider the following

grammar- 

E →E-E 

E →E*E 

E →id 

Parse the input string id-id*id 

using a shift-reduce parser. 

 

 

 

 

 

 

 

 

 
Note: 

If the Incoming operator has more priority than in stack operator then perform Shift otherwise 

perform reduce operation. 

STACK INPUT ACTION 

$ id-id*id$ Shift 

$id -id*id$ Reduce E →id 

$E -id*id$ Shift 

$E- id*id$ Shift 

$E-id *id$ Reduce E →id 

$E-E *id$ Shift 

$E-E* id$ Shift 

$E-E*id $ Reduce E →id 

$E-E*E $ Reduce E →E*E 

$E-E $ Reduce E →E-E 

$E $ Accept 

 



Shift Reduce Parser... 
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 Example : Consider the following

grammar- 

S → ( L ) | a 

L → L , S | S 

Parse the input string ( a , ( a , a ) ) 

using a shift-reduce parser. 
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LR Parser 

 LR parser is one type of bottom up parsing, which is used to parse the large class of grammars.

 In the LR(K) parsing, 

Where,

"L" stands for left-to-right scanning of the input, 

"R" stands for constructing a right most derivation in reverse, and 

"K" is the number of input symbols of the look ahead used to make number of parsing 

decision. 

LR Parser Model: 

 It consists of an Input , an Output, a Stack , 

LR Parser program and a Parsing table 

which has two parts (Action and Goto).

 Input buffer holds the input ,the parser 

program reads character from it one at a 

time.

 The stack holds a sequence of the form

s0 X1 s1 X2 s2 … Xm sm, where Sm is on the 

top. 

 Each Xi is a grammar symbol and Si is a state.



LR Parser... 
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 The Parser program driving LR Parser behaves as follow:

 It determines Sm , the state currently on top of stack and ai ,the current input symbol.

 It then consults action [Sm, ai ]into the parse table which can have one of the four values:

1. Shift s, where s is a state. 

2. Reduce by a grammar production A—> β. 

3. Accept( Successful Parsing) 

4. Error. 

 A Configuration of LR Parser is a pair whose first component is stack content and Second 

component is the input.

(s0 X1 s1 X2 s2 … Xm sm, ai ai+1 … an $) 
 
 

stack Input 
 

 

 

 The next move of a parser is determined by reading the Sm , the state currently on top of stack 

and ai ,the current input symbol.



LR Parser... 
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 The parser behaves based on the entry in the parser table.



LR Parser... 
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 LR Parser behaves as follow(Parsing Process):

1. If action[sm,ai] = shift s then push current input symbol ai, and next state s on to 

the stack, and advance input one position to right: 

(s0 X1 s1 X2 s2 … Xm sm a i s, ai+1 … an $) 

2. If action[sm,ai] = reduce A   find r=|| then 

pop 2*r symbols, push A, and Then push , the entry for GOTO[s m-r , A], onto the 

stack : 
(s0 X1 s1 X2 s2 … Xm-r sm-r A s , ai ai+1 … an $) 

3. If action[sm,ai] = accept,parsing is successful. 

Typ4e.sIof facLtiRonP[samr,asie] r=se:rror then attempt recovery. 

1. SLR(1) Parser 

2. CLR(1) Parser 

3. LALR(1) Parser 

 All the above parsers will follow the same parsing process.



SLR Parser... 
 

 

 

LR(0) Items: 

 An LR (0) item is a production with dot at some position on the right side of the production.

 LR(0) items is useful to indicate that how much of the input has been scanned up to a given 

point in the process of parsing.

 For example, production T → T * F leads to four LR(0) items:

T → ⋅ T * F 

T → T ⋅ * F 

T → T * ⋅ F 

T → T * F ⋅ 

 That production A   has one item [A  •]

Augmented Grammar: 

 If G is a grammar with start symbol S then G‘, the augmented grammar for G, is the grammar 

with new start symbol S‘ and a production S‘ -> S.

 The purpose of this new starting production is to indicate to the parser when it should stop 

parsing and announce acceptance of input.

Example: G: S -> AA 

A -> aA | b 

The augmented grammar for the above grammar will be 

G‘: S‘ -> S 

S -> AA , A -> aA | b 39 



SLR Parser... 
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Closure Operation: 

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the 

two rules: 

1. Initially every item in I is added to closure(I). 

2. If A -> α . Bβ is in closure(I) and B -> γ is a production then add the item B -> .γ to I, If 

it is not already there. We apply this rule until no more items can be added to closure(I). 

Example: 

G‟: S‘ ->S 

S ->AA 

A ->aA/b 

Closure(S‘ ->S)= S‘ ->.S 

S ->.AA 

A ->.aA/.b 

Closure(S ->AA)=S ->.AA 

A ->.aA/.b 

Closure(A ->aA/b)= A ->.aA/.b 



SLR Parser... 
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Goto Operation: 
 



SLR Parser... 
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Canonical LR(0) Items: 

Construct SLR Parsing 

Table and Parse the 

String id*id + id 

G: 
 

E  E+T|T 

T  T*F|F 

F  (E) | id 

Augmented Grammar 

G‟: 

E‘  E 

E  E+T 

E  T 

T  T*F 

T  F 

F (E) 

F  id 43 

E  E+T|T 

T  T*F|F 

F  id|(E) 

E  E+T|T 

T  T*F|F 

F  id|(E) 



SLR Parser... 
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Goto Graph: 



SLR Parser... 
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Construction of SLR Parsing Table: 
 



SLR Parser... 
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SLR Parsing Table: 
 

 
 



SLR Parser... 
1. E  E+T 
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SLR Parsing: 3. T  T*F 4. T  F 

5. F  (E) 6. F  id 
 

 



CLR Parser 
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 CLR represents canonical LR Parser.

 The Grammar used for constructing this parser is called as CLR Grammar or LR(1) Grammar.

 This Parser uses LR(1) items to represent the states of the parser.

 The LR(1) items are of the form [A →α.Xβ , a] which is having two components.

 LR(1) item = LR(0) item + lookahead.

 The first component is an LR(0) item indicates that up to what position in the grammar rule

parsing is completed. 

 Second component is a terminal or $, which represents the actual follow.

Closure operation LR(1) Items: 

1. Start with closure(I) = I 

2. If [A•B, a]  closure(I) then for each production B in the grammar 

and each terminal b  FIRST(a), add the item [B•, b] to I if not already in I 

3. Repeat 2 until no new items can be added 

Goto operation LR(1) Items : 

1. For each item [A•X, a]  I, add the set of items closure({[AX•, a]}) 

to goto(I,X) if not already there 

2. Repeat step 1 until no more items can be added to goto(I,X) 



CLR Parser... 
 

 

 

Construction of canonical set of LR(1) Items: 
 
 

 

 Example:

Construct the CLR Parsing table and parse the string ―adad‖ for the Grammar 

G: 

S → CC 

C → cC 

C → d 

Augmented Grammar G‟: S‘ → S 

S → CC 

C → cC 

C → d 
49 



CLR Parser... 
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G‟: S‘ → S A →α.Bβ , a 

S → CC First(a) 

C → aC 

C → d 

I0: S‘→.S , $ 

S→.CC, $ 

C→.aC , a / d 

C→.d , a / d 

I1:goto(I0,S) 

S‘→S. , $ 

I2: goto(I0,C) 

S→ C.C, $ 

C→.aC , $ 

C→.d , $ 

I3: goto(I0,a) 

C→ a.C , a / d 

C→.aC , a / d 

C→.d , a / d 

I4: goto(I0,d) 

C→d. , a / d 

I5: goto(I2,C) 

S→ CC. , $ 

I6: goto(I2,a) 

C→ a.C , $ 

C→.aC , $ 
C→.d , $ 

I7: goto(I2,d) 

C→d. , $ 

I8: goto(I3,C) 

C→aC. , a / d 

I9: goto(I6,C) 

C→aC. , $ 
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G‟: S‘ → S A →α.Bβ , a 

S → CC First(a) 

C → aC 

C → d 

Goto Graph: 

I0: S‘→.S , $ 

S→.CC, $ 

C→.aC , a / d 

C→.d , a / d 

I1:goto(I0,S) 

S‘→S. , $ 

I2: goto(I0,C) 

S→ C.C, $ 

C→.aC , $ 

C→.d , $ 

I3: goto(I0,a) 

S→ a.C , a / d 

C→.aC , a / d 

C→.d , a / d 

I4: goto(I0,d) 

C→d. , a / d 

I5: goto(I2,C) 

S→ CC. , $ 

I6: goto(I2,a) 

S→ a.C , $ 
C→.aC , $ 

C→.d , $ 

I7: goto(I2,d) 

C→d. , $ 

I8: goto(I3,C) 

C→aC. , a / d 

I9: goto(I6,C) 

C→aC. , $ 

I 
S 

0 I 1 

C I 
C 

2 I 5 

a 

a 
I C 
6 I 9 

d 

d 

a I7 

a 
I3 

C 

d I8 

d I4 
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LR(1) Parsing table construction: 
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CLR Parsing table : 

G‟: S‘ → S 

S → CC 

C → aC 

C → d 

I0: S‘→.S , $ 

S→.CC, $ 

C→.aC , a / d 

C→.d , a / d 

I1:goto(I0,S) 
S‘→S. , $ 

I2: goto(I0,C) 
S→ C.C, $ 

C→.aC , $ 

C→.d , $ 

I3: goto(I0,a) 

 

 

 
I4: goto(I0,d) 

C→d. , a / d 

I5: goto(I2,C) 

S→ CC. , $ 

I6: goto(I2,a) 

C→ a.C , $ 
C→.aC , $ 

C→.d , $ 

I7: goto(I2,d) 

C→d. , $ 

I8: goto(I3,C) 
C→aC. , a / d 

C→ a.C , a / d 

C→.aC , a / d 

C→.d , a / d 

I9: goto(I6,C) 

C→aC. , $ 
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CLR Parsing table : Parsing the string “adad”: 
 

  

Stack Input Action 

$0 adad$ S3 

$0a3 dad$ S4 

$0a3d4 ad$ Reduce C -> d 

$0a3C8 ad$ Reduce C -> aC 

$0C2 ad$ S6 

$0C2a6 d$ S7 

$0C2a6d7 $ Reduce C -> d 

$0C2a6C9 $ Reduce C -> aC 

$0C2C5 $ Reduce S -> CC 

$0S1 $ accept 
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 LALR stands for LookAhead LR Parser.

 The LALR parsing table construction is same as CLR parsing table construction,only at the the 

set of LR(1) items having same core components i.e. similar first components are detected and 

merged together as a single state in the parsing table.

 In this parsing method ,the parse table is considerably smaller than the CLR Parsing table.

Example: 

In CLR example, the items (I3 , I6) , (I4 , I7) and (I8 , I9) have similar core components. 

I3 and I6 are merged as I36 

I36 : 

S→ a.C , a / d /$ 

C→.aC , a / d /$ 

C→.d , a / d /$ 

I4 and I7 are merged as I47 

I47 : C→d. , a / d /$ 

I8 and I9 are merged as I89 

I89 : C→aC. , a / d /$ 

I0: S‘→.S , $ 

S→.CC, $ 

C→.aC , a / d 

C→.d , a / d 

I1:goto(I0,S) 
S‘→S. , $ 

I2: goto(I0,C) 
S→ C.C, $ 

C→.aC , $ 

C→.d , $ 

I5: goto(I2,C) 

S→ CC. , $ 
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LALR Parsing table : Parsing the string “adad”: 
 

 

 

Stack Input Action 

$0 adad$ S36 

$0a36 dad$ S47 

$0a36d47 ad$ Reduce C -> d 

$0a36C89 ad$ Reduce C -> aC 

$0C2 ad$ S36 

$0C2a36 d$ S47 

$0C2a36d47 $ Reduce C -> d 

$0C2a36C89 $ Reduce C -> aC 

$0C2C5 $ Reduce S -> CC 

$0S1 $ accept 

 



Error recovery in parsing 
 

 

 

What should happen when your parser finds an error in the user‘s input? 

 Stop immediately and signal an error .

 Record the error but try to continue.

Error Recovery Strategies: 

1. Panic Mode 

2. Phrase Level 

3. Error Productions 

4. Global Correction 

1. Panic Mode: 

  When a parser encounters an error anywhere in the statement, it ignores the rest of the 

statement by not processing input from erroneous input to synchronizing tokens . 

  Typical synchronizing tokens are delimiters, such as a semicolon, opening or closing 

parenthesis. 

 Simplest method to implement. 

 When multiple errors in the same statement are rare, this method is quite adequate. 

2. Phrase Level : 

On discovering an error, a parser may perform local correction on the remaining input. 

For example, it may replace a prefix of the remaining input by some string that allows the 

parser to continue. 57 
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 A typical local correction would be to:

 Replace a comma by a semicolon,

 Delete an extraneous semicolon, or

 Insert a missing semicolon.

 Major drawback: Situations in which the actual error has occurred before the point of detection.

3.Error Productions : 

If we have a good idea of the common errors then augment the grammar with error 

productions that generate the erroneous constructs. 

Use the grammar augmented by these error productions to construct a parser. 

If an error production is used by the parser, generate an appropriate error diagnostic 

message. 

4. Global Correction: 

The parser examines the whole program and tries to find out the closest match for it which 

is error free. 

When an erroneous input (statement) X is fed, it creates a parse tree for some closest error- 

free statement Y. 

This may allow the parser to make minimal changes in the source code, but due to the 

complexity (time and space) of this strategy, it has not been implemented in practice yet. 
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YACC –Automatic Parser Generator 

 YACC stands for Yet Another Compiler Compiler.

 It is used to produce the source code of the syntactic analyzer of the language produced by 

LALR (1) grammar.

 The input of YACC is the rule or grammar, and the output is a C program.
 

 

 The Unix command transforms the YACC specification file translate.y into a C program called

y.tab.c, which is a representation of LALR parser written in C. 
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 By compiling y.tab.c along with the ly library, we will get the desired object program a.out that

performs the operation defined by the original YACC program. 

 A YACC source program contains three parts:

Declarations 

%% 

Translation rules 

%% 

Supporting C rules 

 
Declarations Part: 

 This part of YACC has two sections; both are optional.

 The first section has ordinary C declarations, which is delimited by %{ and %}.

 This section contains only the include statements .

 In second section we can declare the grammar tokens. Ex %token DIGIT

 Token declared in this section can be used by second and third part of YACC

specification. 
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Translation rules: 

 This part contains translation rules and associated semantic actions.

 This part is enclosed between %% &%%. 

A set of productions:

<head> -> <body1> | <body2> | ….. | <body n> 

would be written in YACC as 

<head> : <body1> {<semantic action>1} 

| <body2> {<semantic action>2} 

….. 

| <body n> {<semantic action>n} 

; 

 The semantic action of YACC is a set of C statements. In a semantic action, the symbol $$ 

considered to be an attribute value associated with the head‘s non-terminal.

 While $i considered as the value associated with the ith grammar production of the body.

Supporting C rules: 

 The third part of a YACC Specification consists of supporting C- routines.

 A lexical analyzer by the name yylex() must be provided.
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Example: 

%{ 

#include <ctype.h> 

%} 

%token DIGIT 

%% 

 

 

 
 

yylex() 

{ 

int c; 

c = getchar(); 

if (isdigit(c)) { 

yylval = c-‗0‘; 

return DIGIT; 

} 

return c; 

} 

line : 

; 

expr ‗\n‘ { printf(―%d\n‖, $1); } 

expr : expr ‗+‘ term { $$ = $1 + $3; } 

 | term   

 ;    

term : term ‗*‘ factor { $$ = $1 * $3; } 

 | factor  

 ;   

factor : ‗(‗ expr ‘)‘ { $$ = $2; } 

 | DIGIT  

 ;   

%%    
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UNIT – III: 

Semantic analysis: Intermediate forms of source Programs – abstract syntax tree, polish notation 

and three address codes. Attributed grammars, Syntax directed translation, 

Conversion of popular Programming languages language Constructs into Intermediate code 

forms, Type checker. 
 
 

Semantic analysis: 

 Semantic Analysis is the third phase of Compiler.

 It makes sure that declarations and statements of program are semantically correct.

 Both syntax tree of previous phase and symbol table are used to check the consistency of the 

given code.

 It gathers type information and stores it in either syntax tree or symbol table. This type 

information is subsequently used by compiler during intermediate-code generation.

 Type checking is an important part of semantic analysis .

 Errors recognized by semantic analyzer are as follows:

 Type mismatch

 Undeclared variables

 Reserved identifier misuse 1




Semantic Analysis 
 

 

Functions of Semantic Analysis: 

 Type Checking :

Ensures that data types are used in a way consistent with their definition. 

 Label Checking:

A program should contain labels references. 

 Flow Control Check:

Keeps a check that control structures are used in a proper manner.(Example: no break 

statement outside a loop). 

Example: 

float x = 10.1; 

float y = x*30; 

In the above example integer 30 will be type casted to float 30.0 before multiplication, by 

semantic analyzer. 
 

 

 

 

 

 

 

 

 

 
 

 

2 
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 An Intermediate source form is an internal form of a program created by compiler while 

translating the source program from high level language to assembly level or machine level 

code.

 Intermediate representation of source program can be done using:

I. Abstract Syntax Tree 

II. Postfix Notation 

III. Three Address Code 

Abstract Syntax Tree: 

 It is a tree structure representation of the abstract syntactic structure of source code written in

a programming language. 

 Each node of a tree denotes a construct 

occurring in the source code.

 This hierarchal structure consists

of operands in leaf nodes and operators 

in the interior nodes. 

 The operator that will be evaluated first is placed 

near the bottom of the tree.

 The operator that will be evaluated at end is placed id+id*id

at the root of the tree. 3 
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Postfix Notation: 

 It is a notation form for expressing arithmetic, logic and algebraic equations.

 Its most basic distinguishing feature is that operators are placed on the right of their 

operands.

 It is a linearised form of the syntax tree.

 Syntax tree can be converted into a postfix notation and vice versa.

Example – The postfix representation of the expression 

Infix notation: (a – b) * (c + d) + (a – b) 

Postfix notation : ab – cd + *ab -+ 

Three Address Code: 

 Three-address code is used to represent an intermediate code.

 Three address code is a sequence of statements of the general form:

x=y op z 

 Each instruction in three address code consist of

 At most three addresses or operands

 At most one operator to represent an expression excluding the assignment operator

 Value computed at each instruction is stored in temporary variable generated

by compiler. 4 
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Example: 

a= (-c * b) + (-c * d) 

Three address code is : 

t1 = -c 

t2 = b*t1 

t3 = -c 

t4 = d * t3 

t5 = t2 + t4 

a = t5 

Implementation of Three Address Code: 

There are 3 representations of three address code: 

1. Quadruple 

2. Triples 

3. Indirect Triples 

Quadruple: 

 It is a record structure consists of 4 fields namely op, arg1, arg2 and result.

 op denotes the operator and arg1 and arg2 denotes the two operands and result is used to 

store the result of the expression.
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 The contents of fields arg1, arg2 and result are pointers to the symbol table entries for the

names represented by these fields. 

 Temporary names must be entered into symbol tables as they are created.

Example : 

a = – c*b + – c*b 

 

 

 

 

 

 

 

 
Triples: 

 This representation doesn’t make use of extra temporary variable to represent a single

operation instead when a reference to another triple’s value is needed, a pointer to that triple 

is used. 

 It consist of only three fields namely op, arg1 and arg2.

 The fields arg1 and arg2 are either pointers to symbol table or pointers into the triple

structure. 
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Example : 

a = – c*b + – c*b 
 

 

 

 

 

 

 

 

 

 

 

Indirect Triples: 

 This representation makes use of pointer to the listing of all references to computations 

which is made separately and stored. Its similar in utility as compared to quadruple 

representation but requires less space than it. Temporaries are implicit and easier to rearrange 

code.

Example : 

a = – c*b + – c*b 
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Attribute Grammar 

 Attribute grammar is a special form of context-free grammar where some additional 

information (attributes) are appended to one or more of its non-terminals in order to provide 

context-sensitive information.

 A finite, possibly empty set of attributes is associated with each distinct symbol in the grammar.

 Each attribute has well-defined domain of values, such as integer, float, character, string, etc.

 It is a medium to provide semantics to the context-free grammar and it can 

help specify the syntax and semantics of a programming language.

 It can pass values or information among the nodes of a parse tree.

Example: 

 
E → E + T { E.value = E.value + T.value } 

Here, the values of non-terminals E and T are added together and the result is copied to the 

non-terminal E. 

 Based on the way the attributes get their values, they can be broadly divided into two 

categories :

I. Synthesized Attributes 

II. Inherited Attributes. 
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Attribute Grammar... 

Synthesized attributes: 

 These attributes get values from the attribute values of their child nodes.

Ex: S → ABC 

 If S is taking values from its child nodes (A,B,C), then it is said to be a synthesized attribute, as 

the values of ABC are synthesized to S.

 As in our previous example (E → E + T), the parent node E gets its value from its child node.

 Synthesized attributes never take values from their parent nodes or any sibling nodes.

Inherited attributes: 

 In contrast to synthesized attributes, inherited attributes can take values from parent and/or 

siblings.

Ex: S → ABC 

 A can get values from S, B and C. B can take values from S, A, and C. Likewise, C can take 

values from S, A, and B.
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SDT & SDD 

Syntax Directed Translation: 

 In syntax directed translation scheme embeds program fragments called semantic actions 

within the production bodies.

Ex: E->E+T { print’+’} 

F->id { print id.val} 

 Semantic Actions are enclosed within the curly braces.

Syntax Directed Definition: 

 In syntax directed definition, the grammar is associated with some notations called as 

semantic rules.

 Grammar + semantic rule = SDD

 In SDD Grammar symbols are associated with attributes and productions are associated with 

semantic rules. Example:

 num.lexval is the attribute 

returned by the lexical 

analyzer.
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S-Attributed and L-Attributed Definition 

S-Attributed Definition: 

 If an SDT uses only synthesized attributes, it is called as S-attributed SDT.

 S-attributed SDTs are evaluated in bottom-up parsing, as the values of the parent nodes depend 

upon the values of the child nodes.

 Semantic actions are placed in rightmost place of RHS.

L-attributed SDT: 

 If an SDT uses both synthesized attributes and inherited attributes with a restriction that 

inherited attribute can inherit values from left siblings only, it is called as L-attributed SDT.

 Attributes in L-attributed SDTs are evaluated by depth-first and left-to-right parsing manner.

 Semantic actions are placed anywhere in RHS.

For example: 

A -> XYZ {Y.S = A.S, Y.S = X.S, Y.S = Z.S} is not an 

L-attributed grammar since Y.S = A.S and Y.S = X.S are 

allowed but Y.S = Z.S violates the L-attributed SDT 

definition as attributed is inheriting the value from its 

right sibling. 

 
Note: If a definition is S-attributed, then it is also L-attributed but not vice-versa. 
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Annotated Parse Tree 

 An Annotated Parse Tree is a parse tree showing the values of the attributes at each node.

 The process of computing the attribute values at the nodes is called annotating or decorating 

the parse tree.
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 Type checking is the process of verifying that each operation executed in a program respects

the type system of the language. 

 There are two types of type checking:

1. Static Type Checking 

2. Dynamic Type checking 

 Static type checking is performed during compile time , it means that the type of a variable 

is known at compile time.

 For some languages, the programmer must specify what type each variable is (e.g C, C++, 

Java)

 In Static Typing, variables generally are not allowed to change types.

 Dynamic type checking is performed at runtime.

 For example, Python is a dynamically typed language. It means that the type of a variable is 

allowed to change over its lifetime. Other dynamically typed languages are -Perl, Ruby, PHP, 

JavaScript etc.
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Type checking of Expressions: 
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Type checking of Statements: 
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Type checking of Functions: 
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Compiler Design 
 
 

UNIT – IV: 

Symbol Tables: Symbol table format, organization for block structures languages, hashing, tree 

structures representation of scope information. Block structures and non block structure storage 

allocation: static, Runtime stack and heap storage allocation, storage allocation for arrays, strings 

and records. 

Code optimization: Consideration for Optimization, Scope of Optimization, local optimization, 

loop optimization, frequency reduction, folding, DAG representation. 
 
 

Symbol Table: 

 Symbol table is an important data structure used in a compiler.

 Symbol table is used to store the information about the occurrence of various entities such as 

objects, classes, variable name, interface, function name etc.

 it is used by both the analysis and synthesis phases.

Symbol table is used by various phases of compiler as follows :- 

 Lexical Analysis: Creates new table entries in the table, example like entries about token.

 Syntax Analysis: Adds information regarding attribute type, scope, dimension, line of 

reference, use,etc in the table.
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 Semantic Analysis: Uses available information in the table to check for semantics i.e. to 

verify that expressions and assignments are semantically correct(type checking) and update 

it accordingly.

 Intermediate Code generation: Refers symbol table for knowing how much and what 

type of run- time is allocated and table helps in adding temporary variable information.

 Code Optimization: Uses information present in symbol table for machine dependent 

optimization.

 Code generation: Generates code by using address information of identifier present in the 

table.

Symbol Table Operations: 
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Symbol Table Format: 

 Symbol table consists of names and its properties like type , values, size ,scope etc.. 

 There are two types of name representations: 

1. Fixed Length Name 

2. Variable Length Name 

 
1. Fixed Length Name Representation: 

 A fixed space for each name is allocated in 

symbol table. 

 In this type of storage, if name is too small then there is wastage of space. 

 The name can be referred by pointer to symbol table entry. 

 
Example: 

SUM, A, PI, MAX are the variables that are stored 

in the symbol table . Memory space is wasted in 

case of variables A and PI as their length is less than 

name field in the symbol table. 

Name Properties/Attributes 

S U M  

A    

P I   

M A X  

 

Name Properties/Attributes 
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2. Variable Length Name Representation: 

 A fixed space is not allocated for name in the symbol table. 

 The name is stored with the help of starting index and length of each name. 

Example: 

 Instead of storing the names SUM, A, B and 

MAX in the symbol table directly , these 

name are stored in an array and they are 

separated with delimiter.

 The staring index of each name in the

array and its length including delimiter 

is stored in the name field of symbol 

table. 
 

 

 

 

 
 

Name  
Properties/Attributes 

Starting 

Index 

Length 

0 4  

5 2  

6 2  

8 4  
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Organization for Block Structures Languages: 

 The block structured language is a kind of language in which sections of source code 

is within some matching pair of delimiters such as “{“ and “}” or begin and end.

 Such a section gets executed as one unit or one procedure or a function or it may be

controlled by some conditional statements (if, while, do-while). 

 Normally, block structured languages support structured programming approach 

Example: C, C++, JAVA, ALGOL,PASCAL etc.

 Non-block structured languages does not contain any blocks ,Examples are LISP, 

FORTRAN and SNOBOL.

Implementation of Symbol Table: 

The following data structures are used for organization of block structured languages: 

1. Linear List 

2. Self-Organizing List 

3. Hashing 

4. Tree Structure 
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1. Linear List: 

 Linear list of records is the easiest way to implement the symbol table.

 In this method, an array is used to store names and associated information.

 The new names are added to the symbol table in the order they arrive.

 The pointer “available” is maintained at the end of all stored records.

 To retrieve the information about some name we start from beginning of array and go on 

searching up to available pointer. If we reach at pointer available without finding a name we 

get an error “use of undeclared name”.

 While inserting a new name we should ensure that it is not already present. If it is already 

present then another error occurs, i.e., “Multiple Defined Name”.
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2. Self Organizing List: 

 In this method, symbol table is implemented using linked list.

 A link field is added to each record.

 We search the records in the order pointed by the link of link field.

 A pointer “First” is maintained to point to first record of the symbol table

 When the name is reference or created, it is moved to the front of the list.

 The most frequently referred names will tend to be at the front of the list. Hence, 

access time to most frequently referred names will be the least.

 The names are referenced in the order as Name3,Name1,Name4 and Name2.
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3. Hashing: 

 Hashing is an important technique used to search the records of symbol table.

 In hashing scheme, two tables are maintained – hash table and symbol table

 The hash table consists of K entries from 0, 1, 2, … to K-1. These entries are

basically pointers to symbol table pointing to the names of symbol table. 

 To determine whether the ‘Name’ is in symbol table, we use a hash function ‘h’ such 

that h (name) will result any integer between 0 to K-1. We can search any name by 

Position = h (name).

 Using the position we can obtain the exact locations of name in symbol table.

 The hash table and symbol table are shown below:
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4. Tree Structure: 

 When the scope information is presented in hierarchical manner then it forms a tree structure 

representation which is an efficient approach for symbol table organization.

 This organization uses binary search tree for storing the names in symbol table.

 We add two links left and right in each record in the search trees.

 Whenever a name is to be added first, the name is searched in the tree.

 If it does not exist then a record for new name is created and added at the proper position.

 Each node of tree has following format:
 

 Example: variables such as Index , a, total ,c , v are organized as follow:
 

c 

a 

Index 

v 

total 
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 Storage allocation refers to process of mapping the data code into appropriate location in the

main memory. 

 Compiler must carry out the storage allocation and provide access to variables and data.

 Storage allocation strategies are:

1. Static Storage Allocation 

 For any program if we create memory at compile time, memory will be created in the 

static area. 

 For any program if we create memory at compile time only, memory is created only once. 

 It don’t support dynamic data structure i.e memory is created at compile time and 

deallocated after program completion. 

 The drawback with static storage allocation is recursion is not supported. 

 Another drawback is size of data should be known at compile time 

 Eg- FORTRAN was designed to permit static storage allocation. 

II. Stack Storage Allocation 

 Stack allocation is a procedure in which stack is used to organize the storage. 

 The stack used in stack allocation is known as control stack. 

 In this type of allocation, creation of data objects is performed dynamically. 

 In this activation records are created for the allocation of memory. 
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 These activation records are pushed onto the stack using Last In First Out (LIFO) method.

 Locals are stored in the activation records at run time and memory addressing is done by using 

pointers and registers .

 Recursion is supported in stack allocation.

 Activation record contains 7 fields :

1. Return Value: It is used by calling procedure to return 

a value to calling procedure. 

2. Actual Parameter: It is used by calling procedures to 

supply parameters to the called procedures. 

3. Control Link: It is an optional field .It points to activation 

record of the caller. It also known as dynamic link field. 

4. Access Link: It is an optional field . It is used to refer to 

non-local data held in other activation records. 

It also known as static link field. 

5. Saved Machine Status: It holds the information about 

status of machine before the procedure is called. 

6. Local Data: It holds the data that is local to the execution of the procedure. 

7. Temporaries: It stores the value that arises in the evaluation of an expression. 
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III. Heap Allocation: 

 Heap is a contiguous memory , Heap allocation is an allocation procedure in which heap is 

used to manage the allocation of memory.

 Heap allocation is used to dynamically allocate memory to the variables and claim it back 

when the variables are no more required.

 Size of Heap-memory is quite larger as compared to the Stack-memory.

 Heap-memory is accessible or exists as long as the whole application runs.

 It maintains a linked list for the free blocks and reuse the deallocated space using best fi1t2.
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If the scope of the optimization is limited to certain specific block of statements 

then it is called as local optimization. 

 

 Common Sub Expression Elimination

 
 Copy Propagation

 
 Dead Code Elimination

 
 Constant Folding

 
 Loop optimization techniques

 

• Code Motion / Frequency Reduction 
 

• Induction variable Elimination 
 

• Reduction in Strength 



Common Sub Expression Elimination: 
 

 

 

It is a compiler optimization technique of finding redundant expression evaluations, and 

replacing them with a single computation . This saves the time overhead resulted by evaluating 

the expression for more than once . 
 

 

 

Before After 
 

 

 

 

 



Copy Propagation 
 

 

 

 

 
z=3+y 

 
x=y 

z=3+x 

 

 

It is the process of replacing the occurrences of targets of direct assignments 

with their values. A direct assignment is an instruction of the form x = y , which simply 

assigns the value of y to x . 

Example: 
 

Before After 



Dead Code Elimination 
 

 

 

Code that is unreachable or that does not affect the program can be eliminated. 

 
Example : 

Function1() 

{ 

int a=10,b=20,c,d; 

c=a+b; 

d=b/a’ 

print(c); 

return; 

print(d); // Dead Code 

} 

Here, the value of d will not print and function will return 



Constant Folding 
 

 

 

 

Constant folding is the process of recognizing and evaluating constant expressions 

at compile time rather than computing them at runtime. 

 
 

Example: 
 

Before: 
 

X=10+20*3/2; 
 

After 
 

X=40; 
 

If an Expression contains all the literals ,they must be folded to a single value. 



Loop Optimization Techniques: 
 

 

 

 

 Code Motion/ Frequency Reduction:
 

Moving the code outside the loop, whose value does not change for all the 

iterations . 
 

Example: 



 

 

 Induction Variable Elimination:

A variable is said to be Induction variable, if the value of a variable changes for 

every iteration in side the loop i.e. increase or decrease with fixed value . if the loop 

contains such variables then we have to eliminate or minimize such variables inside the 

loop. 

Example: 



 

 

 Reduction in Strength :

It is an loop optimization technique in which expensive operations are replaced with 

equivalent and less expensive operations. 

Exponent is replaced with multiplication ,multiplication is replaced with addition in 

order reduce the strength of an expression. 

Example: 
 

Before After 

C=8; 
K=0; 
for(i=0;i<=10;i++) 
{ 
A[i]=k; 
K=k+c; 
} 

C=8; 
for(i=0;i<=10;i++) 
{ 
A[i]=c*i; 
} 



 

 

Directed Acyclic Graph (DAG): 

Directed Acyclic Graph (DAG) is a tool that depicts the structure of basic blocks, 

helps to see the flow of values flowing among the basic blocks, and offers optimization 

too. DAG is used to represent the flow graph. 

DAG consists of : 

 Leaf nodes represent identifiers, names or constants.

 Interior nodes represent operators.

 Interior nodes also represent the results of expressions or the identifiers/name where

the values are to be stored or assigned. 

Example: 

t0 = a + b 

t1 = t0 + c 

d = t0 + t1 



 

 

AST and DAG: 
 

 



 

 

Compiler Design 

UNIT – V: 

Data flow analysis: Flow graph, data flow equation, global optimization, redundant sub 

expression elimination, Induction variable elements, Live variable analysis, Copy 

propagation. 

Object code generation: Object code forms, machine dependent code optimization, 

register allocation and assignment generic code generation algorithms, DAG for register 

allocation. 

--------------------------------------------------------------------------------------------------------------------- 

Basic block: Basic block is a set of statements that always executes in a sequence one after the 

other. 

The characteristics of basic blocks are: 

 There is no possibility of branching or getting halt in the middle.

 All the statements execute in the same order they appear without losing the flow 

control of the program.

Example: 

Basic block Not a Basic block 



 

 

Flow Graph : 

 A graph representation of three-address statements, called a flow graph.

 A flow graph consists of set of basic blocks and edges .

 Edges represents the flow of information  between the basic blocks. 

and block represents computations.

 It is used for data flow analysis through which we can achieve the global optimization.

 We can construct a flow graph for given three address code. 

Example:



 

 

Dominators in flow graph: 

 In a flow graph, a node d dominates node n, if every path from initial node of the 

flow graph to n goes through d. This will be denoted by d dom n. 

 Every initial node dominates all the remaining nodes in the flow graph. 

 Every node dominates itself. 

Example: 

• D(1)={1} 

• D(2)={1,2} 

• D(3)={1,3} 

• D(4)={1,3,4} 

• D(5)={1,3,4,5} 

• D(6)={1,3,4,6} 

• D(7)={1,3,4,7} 

• D(8)={1,3,4,7,8} 

• D(9)={1,3,4,7,8,9} 

• D(10)={1,3,4,7,8,10} 



 

 

Loops in flow graph: 

 A loop must have a single entry point, called the header. This entry point-dominates 

all nodes in the loop. 

 There must be at least one way to iterate the loop(i.e.)at least one path back to the 

header. 

 One way to find all the loops in a flow graph is to search for edges in the flow graph 

whose heads dominate their tails. If a→b is an edge, b is the head and a is the tail. 

These types of edges are called as back edges. 

Example: 

Back edges: 

i) 7→4 4 DOM 7 

ii) 10 →7 7 DOM 10 

iii) 4→3 3 DOM 4 

iv) 8→3 3 DOM 8 

v) 9 →1 1 DOM 9 

 
Natural loop: 

For a back edge n → d, we define the natural loop of the edge to be d plus the 
set of nodes that can reach n without going through d. Node d is the header of the 
loop. 

Example : if back edge is 7→4 ,then natural loop is{4,5,6,7}. 



 

 

Constructing a Flow graph for given Three Address Code 

Algorithm: 

Step 1: Identifying leader in a Basic Block – 

 First statement is always a leader 

 Statement that is target of conditional or un-conditional statement is a leader 

 Statement that follows immediately a conditional or un-conditional statement is a 

leader 

Step 2: For each leader construct the basic block which consists of all the instructions up to but 

not including next leader or the end of intermediate code. 

Step 3: Draw a flow graph 

Example: 

Three address code is: 

1.i=0 

2.if(i>10) goto 6 

3.a[i]=0 

4.i=i+1 

5 goto 2 

6 End 



Step1: Identifying the Leader 

 

 

 

1.i=0   L 

2.if(i>10) goto 6 ------------ L 

3.a[i]=0 L 

4.i=i+1 

5 goto 2 

6 End L 
 

 
 

Step2: Constructing of basic blocks flow graph 

 
B1 

 
B2 

 

 

 
B3 

B4 
6.End 

3.a[i]=0 
4.i=i+1 

5.goto 2 

2.if(i>10) goto 6 

1. i=0 



Step3: Constructing of flow graph 

 

 

 
 

B1 

 
B2 

 

 

 
B3 

 

 

 
B4 

2.if(i>10) goto 6 

3.a[i]=0 
4.i=i+1 

5.goto 2 

6.End 

1. i=0 
B1 

B2 

B 

B4 

3 



 

 

 

The three-address code for the above source program is 

given as : 

 

(1) prod := 0 --------------- L 

(2) i := 1 

(3) t1 := 4* i ---------------- L 

(4) t2 := a[t1] /*compute a[i] */ 

(5) t3 := 4* i 

(6) t4 := b[t3] /*compute b[i] */ 

(7) t5 := t2*t4 

(8) t6:= prod+t5 

(9) prod=t6 

(10) t7 := i+1 

(11) i=t7 

(12) if i<=20 goto (3) 

Basic block 1: Statement (1) to (2) 

Basic block 2: Statement (3) to (12) 



 

 

Live variable Analysis & Data Flow Equation 

Live variable Analysis: 

 It is data flow analysis performed by the compiler to find the variables that are live at the 

exit of each program point. 

 A Variable is said to be live if it hold a value that may be needed in future. 

 For a Basic block B: 

 In[B]= Live variable at the beginning of the Block B

 Out[B]= Live variable at the End of the Block B

 Live variable analysis is done using Data Flow Equation 

 

 
Where, 

GEN[B] = set of all definitions inside B that are “visible” immediately after the block . 

KILL[B] = union of the definitions in all the basic blocks of the flow graph, that are killed 

by individual statements in B. 

Out[B] = Gen[B] U (In[B] – Kill[B]) 



 

 

Algorithm to find In and Out of each block in a flow graph 



 

 

Finding In and Out for the following flow graph: 

Step1: Finding the Predecessors of all 

blocks 
 

Blocks Predecessor 

B1 Φ 

B2 B1,B4 

B3 B2 

B4 B2,B3 

 
Step2: Finding the Gen and Kill of all 

blocks 
 

Blocks Gen Kill 

B1 {1,2,3} {4,5,6,7} 

B2 {4,5} {1,2,7} 

B3 {6) {3} 

B4 {7} {1,4) 

4. i=i+1 

5. J=j+1 

B2 

Exit 

1. i=n-1 B1 

2. j=n 

3. a=u1 

7.i=a+j B4 

6.a=u2 B3 



 

 

Step 3: Finding In and Out for all Blocks 

 
Iteration-1: 

In[B]= Φ and Out[B]=Gen[B] 

 

 
Iteration-2: 

In 2nd and subsequent Iterations In and Out values are calculated using previous iteration and 
following equations : 

In[B]=In[B] U Out[P] where, P is Predecessor of B 

Out[B]=Gen[B]U ( In[B]-Kill[B]) 

Working: 

In[B1]=In[B1] U Out[Predecessor(B1)] 

= Φ  U Out[Φ] 

=Φ U Φ 

= Φ 

Out[B1]=Gen[B1]U(In[B1]-Kill[B1]) 

= {1,2,3}U(Φ- {4,5,6,7}) 

={1,2,3}U Φ 

={1,2,3} 

Similarly ,we have find In and Out for all blocks 

Blocks In Out 

B1 Φ {1,2,3} 

B2 Φ {4,5} 

B3 Φ {6) 

B4 Φ {7} 

 

Blocks In Out 

B1 Φ {1,2,3} 

B2 {1,2,3,7} {3,4,5} 

B3 {4,5} {4,5,6,7) 

B4 {4,5,6} {5,6,7} 

 



 

 

Iteration-3 

Working: 

In[B2]=In[B2] U Out[Predecessor(B2)] 

= {1,2,3,7} U Out[B1,B4] 

={1,2,3,7} U Out[B1] U Out[B4] 

= {1,2,3,7}U{1,2,3}U{5,6,7} 

= {1,2,3,5,6,7} 

Out[B2]=Gen[B2]U(In[B2]-Kill[B2]) 

= {4,5}U({1,2,3,5,6,7}-{1,2,7}) 

={4,5}U {3,5,6} 

={3,4,5,6} 

Iteration-4: Iteration-5: 
 

 

Since Iteration 4 and 5 are Identical we have stop the process. Finally we get In and Out of 

each block. 

Blocks In Out 

B1 Φ {1,2,3} 

B2 {1,2,3,5,6,7} {3,4,5,6} 

B3 {3,4,5} {4,5,6) 

B4 {3,4,5,6} {3,5,6,7} 

 

Blocks In Out 

B1 Φ {1,2,3} 

B2 {1,2,3,5,6,7} {3,4,5,6} 

B3 {3,4,5,6} {4,5,6) 

B4 {3,4,5,6} {3,5,6,7} 

 

Blocks In Out 

B1 Φ {1,2,3} 

B2 {1,2,3,5,6,7} {3,4,5,6} 

B3 {3,4,5,6} {4,5,6) 

B4 {3,4,5,6} {3,5,6,7} 

 



 

 

Peephole optimization: 
 Peephole optimization is a type of Code Optimization performed on a small part of the code

or small set of instruction. 

 
 The small set of instructions or small part of code on which peephole optimization is performed 

is known as peephole or window.

 It basically works on the theory of replacement in which a part of code is replaced by shorter 

and faster code without change in output.

 Peephole is the machine dependent optimization.

 
 Objectives of Peephole Optimization:

 
 To improve performance

 
 To reduce memory footprint

 
 To reduce code size



 

 

 Peephole optimization techniques:

 Redundant instruction elimination

 Unreachable code

 Flow of control optimization

 Algebraic expression simplification

 Reduction in Strength

Redundant instruction elimination : 

At compilation level, the compiler searches for instructions redundant in nature. Multiple 

loading and storing of instructions may carry the same meaning even if some of them are 

removed. 

Example: 

MOV x, R0 

MOV R0, R1 

We can delete the first instruction and re-write the sentence as: 

MOV x, R1 

Unreachable code: 

Unreachable code is a part of the program code that is never accessed because of 

programming constructs. Programmers may have accidently written a piece of code that can 

never be reached. 



 

 

Flow of control optimization: 
If the program control jumps back and forth without performing any significant task. These 

jumps can be removed. 
... 

MOV R1, R2 

GOTO L1 

... 

L1 : GOTO L2 

L2 : INC R1 

In this code , label L1 can be removed as it passes the control to L2. So instead of jumping to L1 and 
then to L2, the control can directly reach L2, as shown below: 

... 

MOV R1, R2 

GOTO L2 

... 

L2 : INC R1 

 
Algebraic expression simplification: 

Algebraic expressions can be made simple by applying simplification rules. 

For example 
The expression a = a + 0 can be replaced by a itself and the expression a = a + 1 can simply be 

replaced by INC a. 

Reduction in Strength: 

Reduction in strength replaces expensive operations by equivalent cheaper ones on the target 
machine. 

For example, 

 x² is invariably cheaper to implement as x*x .

 2*x is invariably cheaper to implement as x+x



 

 

Code Generation: 

Register Allocation and Assignment: 

 The selection of set of variables that will reside in registers at a point in the program is 

called register allocation.

 The picking of specific register that a variable will reside in is called as register

assignment. 

 
Register and Address Descriptors: 

 A register descriptor is used to keep track of what is currently in each registers. The 

register descriptors show that initially all the registers are empty.

 An address descriptor stores the location where the current value of the name can be

found at run time. 

 
Code-generation algorithm: 

 getReg : Code generator uses getReg function to determine the status of available registers

and the location of name values. It works as follows: 

 If variable Y is already in register R, it uses that register.

 Else if some register R is available, it uses that register.

 Else if both the above options are not possible, it chooses a register that requires minimal

number of load(MM to Registers) and store(Registers to MM) instructions. 



 

 

The algorithm takes as input a sequence of three-address statements constituting a basic block. 

For each three-address statement of the form x = y op z , perform the following actions: 

 
1. Invokes a function getreg to determine the location L where the result of the 

computation y op z should be stored. 

2. Consult the address descriptor for y to determine y’, the current location of y. Prefer the 

register for y’ if the value of y is currently both in memory and a register. If the value of 

y is not already in L, generate the instruction MOV y’ , L to place a copy of y in L. 

3. Generate the instruction OP z’ , L where z’ is a current location of z. Prefer a register to 

a memory location if z is in both. Update the address descriptor of x to indicate that x is 

in location L. If x is in L, update its descriptor and remove x from all other descriptors. 

4. If the current values of y or z have no next uses, are not live on exit from the block, and 

are in registers, alter the register descriptor to indicate that, after execution of x : = y op z 

, those registers will no longer contain y or z. 

Example: 

Generate Code for following three address code: 

t : = a – b 

u : = a – c 

v : = t + u 

d : = v + u 



 

 

Statements Code Generated Register descriptor Address descriptor 

  Register empty  

 

t : = a - b 
MOV a, R0 

SUB b, R0 

 

R0 contains t 

 

t in R0 

 

u : = a - c 
MOV a , R1 

SUB c , R1 

R0 contains t 

R1 contains u 

t in R0 

u in R1 

 
v : = t + u 

 
ADD R1, R0 

R0 contains v 

R1 contains u 

u in R1 

v in R0 

 
d : = v + u 

ADD R1, R0 

MOV R0, d 

 
R0 contains d 

d in R0 

d in R0 and memory 



DAG for Register Allocation 
 

 

 

 Code generation from DAG is much simpler than the linear sequence of three address code.

 DAG can be used to rearrange sequence of instructions and generate and efficient code.

 The steps involved in the algorithm to generate code from DAG include :

 Rearranging the order – To optimize the code generation, the instructions are rearranged

and this is referred to as heuristic reordering . 

 Labelling the tree for register information – To know the number of registers required 

to generate code, the labels of the nodes are numbered which indicate the number of 

registers required to evaluate that node.

 Tree traversal to generate code – This reordered labelled tree is traversed to generate 

code based on the target language’s instruction.

Rearranging the order – Heuristic reordering : 

 Rearranging the nodes involves changing the order of independent statements of the DAG 

which will help efficient utilization of the registers.

 This rearranging of nodes also helps in reducing the final cost of assembly level code.



DAG for Register Allocation 
 

 

 

Algorithm: 

Node_listing ( ) 

{ 

while unlisted interior nodes remain do 

begin 

select an unlisted node n, all of whose parents have been listed ; 

list n; 

while the leftmost child m of n has no unlisted parents and is not a leaf do 

/* since n was just listed, m is not yet listed*/ 

begin 

list m; 

n = m 

end 

end 

} 
 

 Final order = reverse of the order of listing of nodes .



DAG for Register Allocation 
 

 

 

Example: 

 

 

 

 

 

 

 

 The listed nodes are “1234568”. This string is reversed to yield, “8654321”.
 This indicates we need to evaluate node 8 followed by 6, 5, 4, 3, 2 and finally 1.
 The following is the sequence of instruction after rearranging.

1. t8 := d +e 

2. t6 := a +b 

3. t5 := t6 - c 

4. t4 := t5 * t8 

5. t3 := t4 – e 

6. t2 := t6 + t4 

7. t1:= t2 + t3 



DAG for Register Allocation 
 

 

 

Labelling the tree for register information : 

 A node ‘n’ is labelled using the following equation:

 
 

 Where l1 is the left child label and l2 is right child label.
Node_labelling( ) 

{ 

if n is a leaf then 

if n is leftmost child of its parents then 

label (n) = 1 

else 

label (n) = 0 

else 

begin /* n is an interior node */ 

let n1, n2 , …. , nk be the children of n ordered by label , 

so label (n1) >= label (n2) >= ….>= label (nk) ; 

label (n) = max (label(ni) + i - 1) 

end 

} 



DAG for Register Allocation 
 

 

 

 We use post order traversal for label computation.

 Node ‘a’ is labelled 1 since it is the left most leaf node. 

‘b’ is labelled 0 as it is the right leaf node. Parent of a, b 

is assigned max (1,0) which is 1.

 We then assign ‘e’ with a value of ‘1’ as it is a left leaf node,

‘c’ and ‘d’ with the values of ‘1’ and ‘0’ as they are the 

left and right leaf nodes. 

 Node t2 is labelled ‘1’ which is the maximum of nodes 

‘c’ and ‘d’ label.

 Node t3 is assigned ‘2’ as its children have a label ‘1’ 

and this node’s label is computed as ‘1’ + label (e).

 Root’s label is given as ‘2’ as its right child has a maximum value of ‘2’.

 

 

 

 

 

 

 

******THANK YOU****** 
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