nmm‘ COLLEGE OF ENGINEERING

SASURIE Appro by AICTE, New Del
TTTTTTTTTTTT Affiliated lo nna University Chenna|

SASURIE COLLEGE OF
ENGINEERING

DEPARTMENT OF CSE

Il YEAR - IV SEMESTER

REGULATION 2021

CS3401- ALGORITHMS

CS3401 ALGORITHMS

COURSE OBJECTIVES:

* To understand and apply the algorithm analysis techniques on searching and sorting algorithms
* To critically analyze the efficiency of graph algorithms

* To understand different algorithm design techniques

* To solve programming problems using state space tree

» To understand the concepts behind NP Completeness, Approximation algorithms and
randomized algorithms.

UNIT 1 INTRODUCTION

Algorithm analysis: Time and space complexity - Asymptotic Notations and its properties Best
case, Worst case and average case analysis — Recurrence relation: substitution method - Lower
bounds — searching: linear search, binary search and Interpolation Search, Pattern search: The naive
string- matching algorithm - Rabin-Karp algorithm - Knuth-Morris-Pratt algorithm. Sorting:
Insertion sort — heap sort

UNIT 11 GRAPH ALGORITHMS

Graph algorithms: Representations of graphs - Graph traversal: DFS — BFS - applications -
Connectivity, strong connectivity, bi-connectivity - Minimum spanning tree: Kruskal’s and Prim’s
algorithm- Shortest path: Bellman-Ford algorithm - Dijkstra’s algorithm - Floyd-Warshall
algorithm Network flow: Flow networks - Ford-Fulkerson method — Matching: Maximum bipartite
matching

UNIT 11l ALGORITHM DESIGN TECHNIQUES

Divide and Conquer methodology: Finding maximum and minimum - Merge sort - Quick sort
Dynamic programming: Elements of dynamic programming — Matrix-chain multiplication - Multi
stage graph — Optimal Binary Search Trees. Greedy Technique: Elements of the greedy strategy
- Activity-selection problem — Optimal Merge pattern — Huffman Trees.

UNIT IV STATE SPACE SEARCH ALGORITHMS

Backtracking: n-Queens problem - Hamiltonian Circuit Problem - Subset Sum Problem — Graph
colouring problem Branch and Bound: Solving 15-Puzzle problem - Assignment problem -
Knapsack Problem - Travelling Salesman Problem

UNIT V NP-COMPLETE AND APPROXIMATION ALGORITHM

Tractable and intractable problems: Polynomial time algorithms — VVenn diagram representation -
NP- algorithms - NP-hardness and NP-completeness — Bin Packing problem - Problem reduction:
TSP — 3- CNF problem. Approximation Algorithms: TSP - Randomized Algorithms: concept and
application - primality testing - randomized quick sort - Finding kth smallest number

45 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

Searching and Sorting Algorithms

1. Implement Linear Search. Determine the time required to search for an element. Repeat the
experiment for different values of n, the number of elements in the list to be searched and plot a
graph of the time taken versus n.

2. Implement recursive Binary Search. Determine the time required to search an element. Repeat
the experiment for different values of n, the number of elements in the list to be searched and plot
a graph of the time taken versus n.

3. Given a text txt [0...n-1] and a pattern pat [0...m-1], write a function search (char pat [], char
txt []) that prints all occurrences of pat [] in txt []. You may assume that n > m.

4. Sort a given set of elements using the Insertion sort and Heap sort methods and determine the
time required to sort the elements. Repeat the experiment for different values of n, the number of
elements in the list to be sorted and plot a graph of the time taken versus n.

Graph Algorithms

1. Develop a program to implement graph traversal using Breadth First Search

2. Develop a program to implement graph traversal using Depth First Search

3. From a given vertex in a weighted connected graph, develop a program to find the shortest
paths to other vertices using Dijkstra’s algorithm.

4. Find the minimum cost spanning tree of a given undirected graph using Prim’s algorithm.
5. Implement Floyd’s algorithm for the All-Pairs- Shortest-Paths problem.

6. Compute the transitive closure of a given directed graph using Warshall's algorithm.

Algorithm Design Techniques

1. Develop a program to find out the maximum and minimum numbers in a given list of n
numbers using the divide and conquer technique.

2. Implement Merge sort and Quick sort methods to sort an array of elements and determine the
time required to sort. Repeat the experiment for different values of n, the number of elements in
the list to be sorted and plot a graph of the time taken versus n.

State Space Search Algorithms
1. Implement N Queens problem using Backtracking.

Approximation Algorithms Randomized Algorithms

1. Implement any scheme to find the optimal solution for the Traveling Salesperson problem and
then solve the same problem instance using any approximation algorithm and determine the error
in the approximation.

2. Implement randomized algorithms for finding the kth smallest number. The programs can be
implemented in C/C++/JAVA/ Python.

COURSE OUTCOMES: At the end of this course, the students will be able to:

CO1: Analyze the efficiency of algorithms using various frameworks

CO2: Apply graph algorithms to solve problems and analyze their efficiency.

CO3: Make use of algorithm design techniques like divide and conquer, dynamic programming
and greedy techniques to solve problems

CO4: Use the state space tree method for solving problems.

CO5: Solve problems using approximation algorithms and randomized algorithms

TOTAL: 75 PERIODS

TEXT BOOKS:

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction
to Algorithms", 3rd Edition, Prentice Hall of India, 2009.

2. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran “Computer Algorithms/C++" Orient
Blackswan, 2nd Edition, 2019.

REFERENCES:

1. Anany Levitin, “Introduction to the Design and Analysis of Algorithms”, 3rd Edition, Pearson
Education, 2012.

2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms",
Reprint Edition, Pearson Education, 2006.
3. S. Sridhar, “Design and Analysis of Algorithms”, Oxford university press, 2014.

UNIT I INTRODUCTION
Algorithm analysis: Time and space complexity - Asymptotic Notations and its properties Best case,
Worst case and average case analysis — Recurrence relation: substitution method - Lower bounds —
Searching: linear search, binary search and Interpolation Search, Pattern search: The naive string-
matching algorithm - Rabin-Karp algorithm - Knuth-Morris-Pratt algorithm. Sorting: Insertion sort —
heap sort

Definition: Algorithm

An algorithm is a sequence of unambiguous instruction for solving a problem, for obtaining a required
output for any legitimate input in a finite amount of time.

“Algorithmic is more than the branch of computer science. It is the core of computer science, and, in
all fairness, can be said to be relevant it most of science, business and technology”

Characteristics of an algorithm:
i. Non — ambiguity / Precise : Each step in an algorithm should be non- ambiguous. i.e each

instruction should be clear and precise.

ii. Finiteness: The algorithm should be finite. The algorithm must be terminated in a specified
time.

iii. Uniqueness: The algorithm must be specified a required output.

iv. Input: Algorithm receives input

v. Output: Algorithm produces output

vi. Generality: The algorithm must works for all set of inputs.

. f lqoritt
An algorithm is a sequence of unambiguous instruction for solving a problem, for obtaining a required
output for any legitimate input in a finite amount of time.

» The nonambiguity requirement for each step of an algorithm cannot be compromised.

» The range of inputs for which an algorithm works has to be specified carefully.

» The same algorithm can be represented in several different ways.

» There may exist several algorithms for solving the same problem.

Problem

v
Algorithm

l

o Input] _—> “Computer” :UEiEUt
1) Consecutive integer checking algorithm for computing gcd(m, n)

Step 1 Assign the value of min{m, n} to t.

Step 2 Divide m by t. If the remainder of this division is 0, go to Step 3; otherwise, go to Step 4.

Step 3 Divide n by t. If the remainder of this division is 0, return the value of t as the answer and stop;
otherwise, proceed to Step 4.

Step 4 Decrease the value of t by 1. Go to Step 2.

2) Middle-school procedure for computing gcd(m, n)
Step 1 Find the prime factors of m.
Step 2 Find the prime factors of n.

Step 3 Identify all the common factors in the two prime expansions found in Step 1 and Step 2.
Step 4 Compute the product of all the common factors and return it as the greatest common divisor of
the numbers given.
Thus, for the numbers 60 and 24,
we get 60=2.2.3.5
24=2.2.2.3
gcd(60,24)=2.2.3=12

3) Euclid’s algorithm for computing gcd(m, n)
Step 1 If n =0, return the value of m as the answer and stop; otherwise, proceed to Step 2.
Step 2 Divide m by n and assign the value of the remainder to r.
Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.
PSEUDOCODE:
ALGORITHM Euclid(m, n)
/[Computes gcd(m, n) by Euclid’s algorithm
/lnput: Two nonnegative, not-both-zero integers m and n
/[Output: Greatest common divisor of m and n
while n=0do
r < mmod n
m<—n
n<r
return m

ASYMPTOTIC NOTAIONS

Asymptotic notations are mathematical tools used to analyze the algorithm in terms of time efficiency.

Types Asymptotic Notations:
1. O Notation (Big Oh)
2. Q Notation (Big Omega)
3. 6 Notation (Big Theta)
1. O Notation (Big Oh):
Definition: A function f(n) is said to be in O(g(n)), denoted f(n) € O(g(n)), if f(n) is bounded above by
some constant multiple of g(n) for all large n, i.e., if there exist some positive constant ¢ and some
nonnegative integer n0 such that
f(n) <cg(n) forallm>n0and c> 0.
O notation analyses the worst case for the given function.
The definition is illustrated in the following figure.

1 cg(n)

t{n)

doesn't
matter

= T
g

Figure 2.1 Big-oh notation: #(n) = O(g(rn))
Here n is size of an input &f(n) is a function of n.
When the input size increases, then the time is also increases.

Example:
Let take f(n)=3n+2 and g(n)=n.
We have to prove f(n)
€0(g(n)). By the definition,

f(n)<c g(n)

3nt2<c*n where ¢>0, no>1.
We can substitute any value for c. The best option is,

When c=4, 3nt2< 4 * n,

Most of the cases, 4*n is greater than 3n+2. Where n>2.
Reason for taking n>2:
If n=1, 3(1)+2 < 4(1)=> 5<4=> Becomes False.
If n=2, 3(2)+2 < 4(2)=> 8<8=> Becomes True.
If n=3, 3(3)+2 < 4(3)=> 11<12=> Becomes True. If n=4, 3(4)+2 <
4(4)=> 14<16=> Becomes True. And so on.
Therefore 3n+2 € O(n).

2.Q Notation (Big Omeqga):

Definition: A function f(n) is said to be in ©(g(n)), denoted f(n) € Q(g(n)), if f(n) is bounded below by some
positive constant multiple of g(n) for all large n, i.e., if there exist some positive constant ¢ and some
nonnegative integer np such that

f(n) > cg(n) for alln > no and ¢ > 0.

Q notation analyses the best case for the given function.

The definition is illustrated in the following figure.

A
t(n)
cg{n)

doesn't
matter

- 11
™,

Fig. 2.2 Big-omega notation: #(n) < $2(g(r))
If n=1, 3(1)+2 >1(1)=> 5>1=> Becomes True.
If n=2, 3(2)+2 >1(2)=> 8>2=> Becomes True.
If n=3, 3(3)+2 >1(3)=> 11>3=> Becomes True. And so on.
Therefore 3n+2 € Q(n).

3.0 Notation (Big Theta):

Definition: A function f(n) is said to be in 6(g(n)), denoted f(n) € 6(g(n)), if f(n) is bounded both above
and below by some positive constant multiples of g(n) for all large n, i.e., if there exist some positive constants
cl and c2 and some nonnegative integer no such that ci1g(n) < f(n) < cog(n) for all n > no. 6 notation analyses
the average case for the given function.

c,g{n)

t{n}
¢ 0(n)

doesn't
maltter

,

Figure 2.3 Big-theta notation: #(n) € @{(g(n))

Here n is size of an input &f(n) is a function of n.
When the input size increases, then the time is also increases. c; and cz are different constants.
f(n) is bounded by both upper and lower i.e) cig(n) < f(n) < c2g(n).
Example:
Let take f(n)=3n+2 and g(n)=n.
We have to prove f(n) €6(g(n)). By the definition,
c1g(n) < f(n) < c2g(n)
The definition is illustrated in the following figure.
Ct*nNn<3n+t2 <c2*n3n+2 < c2* n when
c2=4and 3n+2>c1 * n when c1=1.
Such that, 1*n < 3n+2 < 4*n. Where n>2. Therefore 3n+2
=0(n).

ful lving . .
Property 1:

If t1(n) € O(gl(n)) and t2(n) € O(g2(n)), then t1(n) + t2(n) € O(max{gl(n), g2(n)}).

PROOF:
The proof extends to orders of growth the following simple fact about four arbitrary real numbers al,
bl, a2, b2: ifal <bl and a2 < b2, then al + a2 <2 max{bl, b2}.
Since t1(n) € O(g1(n)), there exist some positive constant c1 and some nonnegative integer nl such that
t1(n) <clgl(n) for all n >nl.
Similarly, since t2(n) € O(g2(n)),
t2(n) < c2g2(n) for all n > n2.
Let us denote c3 = max{cl, c2} and consider n > max{nl, n2} so that we can use both inequalities.
Adding them yields the following:
t1(n) + t2(n) < clgl(n) + c2g2(n)
<¢3g1(n) + c3g2(n) = c3[gl(n) + g2(n)] < c32 max{gl(n), g2(n)}.
Hence, t1(n) + t2(n) € O(max{gl(n), g2(n)}), with the constants ¢ and nO required by
the O definition being 2¢3 = 2 max{cl, c2} and max{nl, n2}, respectively.
Limits for Comparing Orders of Growth
T 0 1:.]'I'L|'Jl]:l.‘,:-i that #(n) has a smaller order 1:-I.' growth than g(n),
lim = ¢ ¢ 1mphes that ¢ (n) has the same order of growth as g(n).
nree gln) oo implies that r(n) has a larger order of growth than g(n).}

L’Hopital’s rule

tim £ _ iy 10
i — gl:n-} i — Sl {n]

and Stirling’s formula

Lig
n .
n! == " 2mn (—) for large values of n.
-

EXAMPLE 1 Compare the orders of growth of $nin — 1) and »°. (This is one of
the examples we used at the beginning of this section Lo illustrate the definitions.)

im 27 =D _ 1 L oo L 1, =1
R—>o0 m? 2 m—o0 p2 2 m—oo n 2

Since the limit is egual to a positive constant, the functions have the same order
of growth or, symbolically, 2nin — 1) € B(n?). ™

EXAMPLE 2 Compare the orders of growth of log; n and /n. (Unlike Exam-
ple 1, the answer here is not immediately obvious.)

.1 lo ’ , lo 1
lim M = I.il'l'l .ﬂ = |1I'I'1_ % =2 Iﬂgz e l.iII.'I L = (.
I — 1] — {ﬁ} o — m — 0 -..."I'E

Since the limit is equal to zero, log, » has a smaller order of growth than /n. (Since
lI:'—"‘;.’—' =0, we can use the so-called litrle-oh notation: log, n € o(/).

M

EXAMPLE 3 Compare the orders of growth of n! and 2", (We discussed this
informally in Section 2.1.) Taking advantage of Stirling’s formula, we get

! 2T {f]”
211

lam

— O

lim — = lim
n—emo A H— 30

= lim "#E‘T"‘iz:—fn= lim ~ 2w H—) = o0,

r—e D0 r—e D0 e

Thus, though 2" grows very fast, n! grows still faster. We can write symbolically that
n! e 0Q(2"); note, however, that while the big-Omega notation does not preclude
the possibility that n! and 2* have the same order of growth, the limit computed
here certainly does. [

Basic Efficiency Classes

Class ™ Comments

1 B HLETRTE Short of best-case efficiencies, very few reasonable
examples can be given since am algorithm™s runming
time typically goes to infinity when its input size grows
infinitely larg-e.

log n fogarithrmic Twpically, a result of cutting a problem’™s size by a
constant factor on each iteration of the algorithm (see
Section 4.4). Note that a logarithmic algorithm cannot
take Into account all its input or even a fixed fraction
of itz any algorithm that does so will have at least linear
runming time.

n firrear Adgorithms that scan a list of size n (eg.. sequential
search) belong to this class.
rr logg ra firtearirforreic Many divide-and-conguer algorithms (see Chapter 5).

including mergesort and quick=sort in the average case.
fall into this category.

n cprear el Parric Twpically, characterizes efficiency of algorithms with
two embedded loops (see the next section). Elemen-
tary sorting algorithms and cergain operations omn n =
maltrices are standard examples.

n culvic Twpically, characierizes efficiency of algorithms wiih
three embedded loops (see the next section). Sewveral
nontrivial algorithms from linear algebra fall into this
class.

= e T T i Twpical for algorithms that gemerate all subsets of an
m-element set. (Mien, the term “exponential™ is used
in a broader sense to include this and larger orders of
growth as well.

! facrorial Typical for algorithms that generate all permutations
of an r-element set.

ALGORITHM ANALYSIS:
¢ There are two kinds of efficiency
¢ Time efficiency - indicates how fast an algorithm in question runs.
¢ Space efficiency - deals with the extra space the algorithm requires.
MEASURING AN INPUT SIZE :
¢ An algorithm's efficiency as a function of some parameter n indicating the algorithm's input size.
¢ In most cases, selecting such a parameter is quite straightforward.
¢ For example, it will be the size of the list for problems of sorting, searching, finding the list's
smallest element, and most other problems dealing with lists.
¢ For the problem of evaluating a polynomial p(x) =an x "+ ...+ a o of degree n, it will be the
polynomial's degree or the number of its coefficients, which is larger by one than its degree.
¢ There are situations, of course, where the choice of a parameter indicating an input size does matter.
¢ Example - computing the product of two n-by-n matrices.
¢ There are two natural measures of size for this problem.
¢ The matrix order n.
¢ The total number of elements N in the matrices being multiplied.
¢ Since there is a simple formula relating these two measures, we can easily switch from one to the
other, but the answer about an algorithm's efficiency will be qualitatively different depending on
which of the two measures we use.
¢ The choice of an appropriate size metric can be influenced by operations of the algorithm in
question. For example, how should we measure an input's size for a spell- checking algorithm? If
the algorithm examines individual characters of its input, then we should measure the size by the
number of characters; if it works by processing words, we should count their number in the input.
¢ We should make a special note about measuring size of inputs for algorithms involving properties
of numbers (e.g., checking whether a given integer n is prime).
¢ For such algorithms, computer scientists prefer measuring size by the number b of bits in the n's
binary representation:

b=logzn | +1
¢ This metric usually gives a better idea about efficiency of algorithms in question.

UNITS FOR MEASURING RUN TIME:

¢ We can simply use some standard unit of time measurement-a second, a millisecond, and so on-to
measure the running time of a program implementing the algorithm.

¢ There are obvious drawbacks to such an approach. They are Dependence on the speed of a particular
computer.Dependence on the quality of a program implementing the algorithm

¢ The compiler used in generating the machine code.The difficulty of clocking the actual running time of
the program.

¢ Since we are in need to measure algorithm efficiency, we should have a metric that does not depend
on these extraneous factors.

¢ One possible approach is to count the number of times each of the algorithm's operations is
executed. This approach is both difficult and unnecessary.

¢ The main objective is to identify the most important operation of the algorithm, called the basic
operation, the operation contributing the most to the total running time, and compute the number
of times the basic operation is executed.

> WORST CASE, BEST CASE AND AVERAGE CASE EFFICIENCES

¢ Itisreasonable to measure an algorithm's efficiency as a function of a parameter indicating the size

of the algorithm's input.

¢ But there are many algorithms for which running time depends not only on an input size but also
on the specifics of a particular input.

¢ Example, sequential search. This is a straightforward algorithm that searches for a given item
(some search key K) in a list of n elements by checking successive elements of the list until either
a match with the search key is found or the list isexhausted.

¢ Here is the algorithm's pseudo code, in which, for simplicity, a list is implemented as an array. (It
also assumes that the second condition A[i] i= K will not be checked if the first one, which checks
that the array's index does not exceed its upper bound, fails.)
ALGORITHM Sequential Search(A[0..n -1], K)
/[Searches for a given value in a given array by sequential search
/nput: An array A[0..n -1] and a search key K
/[Output: Returns the index of the first element of A that matches K
I or -1 if there are no matching elements i<—0
while i<nand A[i] #K do
1—i+1
ifi<nreturni
else return -1

> Worst case efficiency

¢ The worst-case efficiency of an algorithm is its efficiency for the worst-case input of size n, which
is an input (or inputs) of size n for which the algorithm runs the longest among all possible inputs
of that size.

¢ Inthe worst case, when there are no matching elements or the first matching element happens to be
the last one on the list, the algorithm makes the largest number of key comparisons among all
possible inputs of size n:

Cuworst (n) = n.

¢ To analyze the algorithm to see what kind of inputs yield the largest value of the basic operation's
count C(n) among all possible inputs of size n and then compute this worst- case value C worst (n)

¢ The worst-case analysis provides very important information about an algorithm's efficiency by
bounding its running time from above. In other words, it guarantees that for any instance of size n,
the running time will not exceed C worst () its running time on the worst-case inputs.

> Best case Efficiency

¢ The best-case efficiency of an algorithm is its efficiency for the best-case input of size n, which is
an input (or inputs) of size n for which the algorithm runs the fastest among all possible inputs of
that size.

¢ We can analyze the best case efficiency as follows.

¢ First, determine the kind of inputs for which the count C (n) will be the smallest among all possible
inputs of size n. (Note that the best case does not mean the smallest input; it means the input of size
n for which the algorithm runs the fastest.)

¢ Then ascertain the value of C (n) on these most convenient inputs.

¢+ Example- for sequential search, best-case inputs will be lists of size n with their first elements equal
to a search key; accordingly, Cpest(n) = 1.

> Average case efficiency
¢ ltyields the information about an algorithm about an algorithm‘s behaviour on a

-typicall and -randoml input.

¢ To analyze the algorithm's average-case efficiency, we must make some assumptions
about possible inputs of size n.

The average number of key comparisions Cavg(n) can be computed as follows,

¢ let us consider again sequential search. The standard assumptions are,

¢ Inthe case of a successful search, the probability of the first match occurring in the ith position of
the list is pin for every i, and the number of comparisons made by the algorithm in such a situation
is obviously i.

¢ Inthe case of an unsuccessful search, the number of comparisons is n with the probability of such
a search being (1 - p). Therefore,

P P P P
Caxg(M)=[1.— +2. — + e + 1. — + .. +n.—]+n.1-p
I m m m

e

= P
— 1 +2+ 3 +ueeee + 1 +ueee + n] + n (1 -p)

=P n{n-+1)
— 4+ m(1-pP
n 2

p_(n+1)
= +n(l1-p)
2

¢ Example, if p = 1 (i.e., the search must be successful), the average number of key comparisons
made by sequential search is (n + 1) /2.
¢ Ifp =0 (i.e., the search must be unsuccessful), the average number of key comparisons will be n
because the algorithm will inspect all n elements on all such inputs.
Recapitulation of the Analysis Framework
> Both time and space efficiencies are measured as functions of the algorithm’s input size.
» Time efficiency is measured by counting the number of times the algorithm’s basic
operation is executed. Space efficiency is measured by counting the number of extra
memory units consumed by the algorithm.
» The efficiencies of some algorithms may differ significantly for inputs of the same size.
» The framework’s primary interest lies in the order of growth of the algorithm’s running
time (extra memory units consumed) as its input size goes to infinity.

Recurrence relation: substitution method
A recurrence is an equation or inequality that describes a function in terms of its values on smaller
inputs. To solve a Recurrence Relation means to obtain a function defined on the natural numbers that

satisfy the recurrence.

(1) wh=1,

T(n) =
2T (n/2) 4+ O(n) ifn>1,

There are four methods for solving Recurrence:
1) Substitution Method.

a) Backward Substitution. eg) X(n) = X(n-1) +5
b) Forward Substitution eg) X(n) = X(n+1) +5
2) Recursion Tree Method.
3) Master Theorem Method.

1. Substitution Method:
The Substitution Method Consists of two main steps:
1. Guess the Solution.
2. Use the mathematical induction to find the boundary condition and shows that the guess is correct.

Forward substitution:
One of the simplest methods for solving simple recurrence relations is using forward substitution. In this
method, we solve the recurrence relation for n=0,1,2,...until we see a pattern. Then we make a guesswork
and predict the running time. The final and important step in this method is we need to verify that our
guesswork is correct by using the induction.
Example:
T()=1lifn=1
=2T (n-1) +1if n>1
Solution:
T(1)=1
T(2)=2T(2-1) +1 = 2T(1)+1=2(1)+1=3
T(3) = 2 T(3-1)+1=2T(2)+1=2(3)+1=7
T(4) = 2 T(4-1)+1=2T(3)+1=2(7)+1=15
= T(n)=2"-1

Backward substitution:
In backward substitution, we do the opposite i.e. we put n=n,n—1,n—2,.. or n=n,n/2,n/4,... until we see
the pattern. After we see the pattern, we make a guesswork for the running time and we verify the
guesswork.
Example:
X(n) = X(n-1) +5 for n>1 X(1)=0
Solution:
X(n)=X(n-1)+5 -(1)
X(n-1)=X(n-2)+5 -(2)
Substitute (2) in (1)
X(n)=X(n-2)+5+5 -(3)
X(n-2)=X(n-3)+5 -(4)
Substitute (4) in (3)
X(n)=X(n-3)+3x5
= X(n)=X(n-1) +ix5
n-i =1 as per initial condition
i=n-1

= X(n)=X(n-(n-1))+(n-1)x5

=X(1)+5(n-1)
X(n)=5(n-1) where X(1)=0

2.Recursive Tree Method:

1. Recursion Tree Method is a pictorial representation of an iteration method which is in the form of a tree
where at each level nodes are expanded.

2. In general, we consider the second term in recurrence as root.
3. It is useful when the divide & Conquer algorithm is used.

4. It is sometimes difficult to come up with a good guess. In Recursion tree, each root and child represents the
cost of a single subproblem.

5. We sum the costs within each of the levels of the tree to obtain a set of pre-level costs and then sum all pre-
level costs to determine the total cost of all levels of the recursion.

6. A Recursion Tree is best used to generate a good guess, which can be verified by the Substitution Method.

Consider T (n) = 2T[:':j':| + n?

Solution: The Recursion tree for the above recurrence is

Solution: The Recursion tree for the above recurrence is

n n

, T(n/2)
Tin/2) Tin/2) Tin/2) n/2)
Tirva) T(n/4) Tinva) Tin/4)
-
n » n
> n
2y (n/25 - » >
o
n/4ay (nsay’ (rsay (nsay > g
log n
(rvs)* n/8) w8)Y (rn/8) /8y (rws)Y (rv8y (rw8y >
8(n) -
> n= n=Z .
ITM=n“+—-+—-"......Jogntimes.

2

4
> 1
=z ==, ()

> 1) >
=n- (1) = 2n-~

T (m) = 6n~

Niw

Master Theorem:

Master Theorem If f(n) € @(n?) where d = 0 in recurrence (5.1), then

@(nd) if a < b4,
T(n)e { O@logn) ila=b",
@(n'% 9y ifa = p9.

Analogous results hold [or the @ and €2 nolations, Loo.

For example, the recurrence for the number of additions A(n) made by the
divide-and-conquer sum-computation algorithm (sce above) on inputs of size
n="2Fkis

An)=2An/2) + 1.
"Thus, for this example, a =2, b =2, and d = 0; hence, since a = b,

A(n) e (2% = @(n'°22) = On).

If, C(n) =2C(n/2) +Cmerge(n) forn>1, C(1) =0.
for the worst case, Cmerge(n) =n —1, and we have the recurrence

Cworst(n) =2Cworst(n/2) +n—-1 forn> 1, Cworst(1l) =0
a=2,b=2,d=0, then, C(n)= 0(n log n)

Lower bounds:

Lower bound in algorithms refers to the minimum amount of resources (such as time or space) that
an algorithm must take to solve a particular problem. Lower bounds are used to establish a lower
limit on the performance of any algorithm for a specific problem, which helps to determine if a
given algorithm is optimal or if there is room for improvement.

There are several ways to establish lower bounds, including:

Information-theoretic lower bounds: These lower bounds are based on the information-theoretic
limits of computation, and are independent of the specific algorithm being used. For example, the
lower bound for sorting n items is Q(n log n).

. Computational lower bounds: These lower bounds are based on the assumption that certain
computational problems are hard, and that any algorithm for solving those problems must take a
certain amount of time.

3. Adversarial lower bounds: These lower bounds are based on the worst-case scenario, where an
adversary is trying to make the algorithm perform as poorly as possible. For example, the lower
bound for searching an unsorted list of n items is Q(n).

The lower bound provides a baseline for the performance of any algorithm, and helps to determine
the best possible solution for a given problem. By knowing the lower bound, researchers and
practitioners can evaluate different algorithms and determine which one is the most efficient for a
specific problem.

Searching :

Searching is an operation or a technique that helps finds the place of a given element or value
in the list. Any search is said to be successful or unsuccessful depending upon whether theelement
that is being searched is found or not. Some of the standard searching technique that is being
followed in data structure is listed below:

1. Linear Search

2. Binary Search
LINEAR SEARCH

Linear search is a very basic and simple search algorithm. In Linear search, we search an
element or value in a given array by traversing the array from the starting, till the desired elementor
value is found.

It compares the element to be searched with all the elements present in the array and when the
element is matched successfully, it returns the index of the element in the array, else it return -1.

Linear Search is applied on unsorted or unordered lists, when there are fewer elements in a list.For

Example,

Linear Search

[(1:0)[14][19](26][2'][31][33][35](42][44]

33

ALGORITHM SequentialSearch(A]|0..n — 1], K)

/ISearches for a given value in a given array by sequential search
/[fInput: An array A|0..n — 1] and a search key K
/[[Output: The index of the first element in A that matches K
If or —1 if there are no matching elements
i <0
while i < n and A[i| # K do
i —i+1
if i < n return {
else return —1

Advantages of Linear Searching:
e Itissimple to implement.
e It does not require specific ordering before applying the method
Disadvantages of Linear searching:
e Itis less efficient
Time Complexity:
The best-case inputs for sequential search are lists of size n with their first element equal to a search
key; accordingly, Cbest(n) =1
In the case of an unsuccessful search, the number of comparisons will be n with the probability of such
a search being (1 — p). Therefore

2 2
Cave(m) =[1- E"I’Z'L+“‘+f‘E+"‘+JT-LI+FI‘{]—p}
n n n n
=£[]+2+~~-+r'+-~-+r;r]+n|[] - p)
n
nin+1 n+1
= Eg-i—n(l - p)= pint’) +n(l— p).
" 2 2
Features of Linear Search Algorithm
1. It is used for unsorted and unordered small list of elements.

2. It has a time complexity of O(n), which means the time is linearly dependent onthe
number of elements, which is not bad, but not that good too.

3. It has a very simple implementation.

BINARY SEARCH
Binary Search is used with sorted array or list. In binary search, we follow the following steps:
We start by comparing the element to be searched with the element in the middle ofthe list/array.
If we get a match, we return the index of the middle element.

If we do not get a match, we check whether the element to be searched is less or greater than in
value than the middle element.

If the element/number to be searched is greater in value than the middle number, then we pick
the elements on the right side of the middle element(as the list/array issorted, hence on the right,
we will have all the numbers greater than the middle number), and start again from the step 1.

If the element/number to be searched is lesser in value than the middle number, thenwe pick the
elements on the left side of the middle element, and start again from thestep 1.

Features of Binary Search
1. It is great to search through large sorted arrays.

2. It has a time complexity of O(log n) which is a very good time complexity. It has a
simple implementation.

Binary search is a fast search algorithm with run-time complexity of T(log n). This search
algorithm works on the principle of divide and conquers. For this algorithm to work properly, the
data collection should be in the sorted form.

Binary search looks for a particular item by comparing the middle most item of the collection.If
a match occurs, then the index of item is returned. If the middle item is greater than the item, then
the item is searched in the sub-array to the left of the middle item. Otherwise, the item is searched

for in the sub-array to the right of the middle item. This process continues on the sub- array as well
until the size of the sub array reduces to zero.

How Binary Search Works?

For a binary search to work, it is mandatory for the target array to be sorted. We shall learnthe
process of binary search with a pictorial example. The following is our sorted array and let usassume
that we need to search the location of value 31 using binary search.

10 14 19 26 27 31 330 35 42 44
0 1 2 3 4 5 6 7 8 9

First, we shall determine half of the array by using this formula -mid
= low + (high - low) / 2

Hereitis, 0+ (9-0)/2 =4 (integer value of 4.5). So, 4 is the mid of the array.

10 14 19 26 27 3 35 42 44
3 5 6 7 8

0 1 2 4 9

Now we compare the value stored at location 4, with the value being searched, i.e. 31. We
find that the value at location 4 is 27, which is not a match. As the value is greater than 27 and we
have a sorted array, so we also know that the target value must be in the upper portion of the array.

10 1{ 19 26 27 i@;{ %{ %{ ‘]p[j

0 1 2 3 4

We change our low to mid + 1 and find the new mid value again.low
=mid+1
mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value stored at location 7 with our target value 31.

7 8 9

0 1 2 3 4 5 6

The value stored at location 7 is not a match, rather it is more than what we are lookingfor.
So, the value must be in the lower part from this location.

10 1{ 19 26 27 31 3@@2 44]
7 8 9

0 1 2 3 4) §

Hence, we calculate the mid again. This time it is 5.
10 14 19 26 27 31 33 ;35 42 44
l? 8 9

0 1 2 3 4 5 6
We compare the %Iue stored at location 5 with r lue. We find that]t is a match.

[10 14 19 26 27 5ol BN a2 44]
4) 6

0 1 2 3 7 8 9

We change our low to mid + 1 and find the new mid value again.low

=mid +1

mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value stored at location 7 with our target value 31.
10 14 19 26 27 @@.@44
0 1 2 3 4 9

The value stored at location 7 is not a match, rather it is more than what we are lookingfor.

So, the value must be in the lower part from this location.

We compare the value stored at location 5 with our target value. We find that it is a match.

10 1{ 19 26 27 31 .- 42 44]

0 1 2 3 4 5 6 7 8 9

We conclude that the target value 31 is stored at location 5.

ALGORITHM BinarySearch(A[0.n — 1], K)

//Implements nonrecursive binary search
[/Input: An array A[0..n — 1] sorted in ascending order and

/! a search key K
[/{Output: An index of the array’s element that is equal to K
/f or —1 if there is no such element

[0 r+—n-=1

while /| = r do
m <« (I +r)/2]
if K = A|m|return m
elseif K = Alm| r < m — 1
else /| «— m + 1

return — |

How many such comparisons does the algorithm make on an array of n
elements? The answer obviously depends not only on n but also on the specifics of
a particular instance of the problem. Let us find the number of key comparisons
in the worst case C,,,,(n). The worst-case inputs include all arrays that do not
contain a given search key, as well as some successful searches. Since after one
comparison the algorithm faces the same situation but for an array half the size,
we get the following recurrence relation for C, . (n):

Coors) =Coei(In/2y+1 forn=1 C,,,, (1) =1
Cu'ur.\l(zk) =k+1= lOg: n+ 1.

Cuors(n) = [log, n] + 1= [log,(n + 1)].

C,pe(n) = log, n.

avg

Interpolation Search:

Interpolation search is an improved variant of binary search. This search algorithm works on the probing
position of required value. For this algorithm to work properly the data collection should be in sorted form and
equally distributed.

Binary search has huge advantage of time complexity over linear search. Linear search has worstcase
complexity of O(n) whereas binary search has O(logn). There are cases where the location of target data may
be known in advance.

For example, in case of telephone directory, if we want to search telephone number of Morphius. Here, linear
search and even binary search will seem slow as we can directly jump to memory space where names start from
‘M are stored.

Position Probing in Interpolation Search

Interpolation search search a particular item by computing the probe position. Initially probe position is the
position of the middle most item of the collection.

. e

If match occurs then index of item is returned. To split the list into two parts we use the following method
mid = Lo + ((Hi - Lo) / (A[Hi] - A[Lo])) * (X - A[Lo])

where -
A = list
Lo = Lowest index of the list
Hi = Highest index of the list
A[n] = Value stored at index n in the list

If middle item is greater than item then probe position is again calculated in the sub-array to the right of the
middle item other wise item is search in sub-array to the left of the middle item. This process continues on sub-
array as well until the size of subarray reduces to zero. Runtime complexity of interpolation search algorithm
is Olog(logn) as compared to Ologn of BST in favourable situations

Algorithm:

Step 1 - Start searching data from middle of the list.

Step 2 - If it is a match, return the index of the item, and exit.
Step 3 - If it is not a match, probe position.

Step 4 - Divide the list using probing formula and find the new midle.
Step 5 - If data is greater than middle, search in higher sub-list.
Step 6 - If data is smaller than middle, search in lower sub-list.
Step 7 - Repeat until match.

Pseudocode:

A Array list
N Size of A
X rfarget Value

Procedure Interpolation_Search

Set Lo 0
Set Mid 3 ¢
Set Hi N-1

While X does not match

if Lo equals to Hi OR A[Lo] equals to A[Hi
EXIT: Failure, Target not found
end if

Set Mid = Lo + ((Hi Lo) A[Hi] AlLo X AlLo])

if A[Mid] = X
EXIT: Success, Target found at Mid
else
if A[Mid X
Set Lo to Mid+1
else if A[Mid] X
Set Hi to Mid-1
end if
end if

End wWhile

End Procedure

Pattern search/ Pattern Searching or String matching

String matching algorithms are normally used in text processing. Normally text processing is done in
compilation of program.

In software design or system design also text processing is a vital activity.

Given a string of n characters called the text and a string of m characters (m < n) called the pattern, find a
substring of the text that matches the pattern.

To put it more precisely, we want to find i—the index of the leftmost character of the first matching substring
in the text—such that ti = p0,...,ti+j = pj ,...,titm—1 = pm—1:

.- oo higp oo limed tq text T
1 T ¥
Po -+« Pj - Pm-1 pattern P

If matches other than the first one need to be found, a string-matching algorithm
can simply continue working until the entire text is exhausted.

Different string matching Algorithms are,
1. The naive string- matching algorithm
2. Rabin-Karp algorithm
3. Knuth-Morris-Pratt algorithm

The naive string- matching algorithm:

The naive algorithm finds all valid shifts using a loop that checks the condition
P[l..m]| = T|[s+ 1..s + m] for each of the n — m + 1 possible values of s.

NAIVE-STRING-MATCHER(T, P)
I n = T.length
2 m = P.length
3 fors =0ton—m
if P[1..m]==T[s+1..5+ m]
print “Pattern occurs with shift” s

L [N

The naive string-matching procedure as sliding a “template” containing the pattern over the text, noting for
which shifts all of the characters on the template equal the corresponding characters in the text.

The for loop of lines 3-5 considers each possible shift explicitly. The test in line 4 determines whether the
current shift is valid; this test implicitly loops to check corresponding character positions until all positions
match successfully or a mismatch is found. Line 5 prints out each valid shift s.

Procedure NAIVE-STRING-MATCHER takes time O((n - m +1)m), and this bound is tight in the worst case.
For example, consider the text string an (a string of n a’s) and the pattern am. For each of the nmC1 possible
values of the shift s, the implicit loop on line 4 to compare corresponding characters must execute m times to
validate the shift.

EIEEEE CEEEEE CEEEEE [CEREE
=0 lals) SLaTal) s

(a) (b) (c) (d)

The Rabin-Karp algorithm:

The Rabin — Karp method is based on hashing technique. The algorithm assumes each character to be a digit
in radix-d notation. It makes use of equivalence of two numbers modulo a third number.

Given a pattern P[1..m], let p denote its corresponding decimal value. In a similar manner, given a text T[1..n],
let ts denote the decimal value of the length-m substring T[s+1..s+m], for s=0,1....n - m. Certainly, ts=p if and
only if T[s+1..s+m]=P[1..m] thus, s is a valid shift if and only if ts=p.

ELEEE0 R EREE R B 5]

mod 13
(a)
1 2 3 4 5 & 7 B 9 10 11 12 13 14 15 16 17 18 19

[2[3|s5]9]o|2]3]|1]|a|1]|5]|2][6]|7]3]|9]|9]|2]1]

mod 13
[g]o]3|ufof1|7]8]4]5]0]11]7]9]1]
valid spurious
match hit
(b)
old new old new
high-order low-order high-order low-order
djgit\ jigit digji s}lift /digjt
3[1]a]1]5]2] 14152 = (31415 —3-10000)-10 + 2 (mod 13)
T =({7-330104+2 (mod 13)
. = 8 (mod 13)
7] 8]
(c)
Algorithm:
RABIN-KARP-MATCHER(T, P.d.q)
1 n = T.length
2 m = P.length
3 h=d™ " modg
4 p=0
5 o = 0
6 fori = ltom // preprocessing
7 p = (dp + Pli]) mod ¢
8 to = (dto + T[i]) mod ¢
9 fors =0ton—m // matching
10 if p==t,
11 if P[1..m]==T[s+1..5s +m]
12 print “Pattern occurs with shift” s
13 ifs<n—m
14 ts+1 = (d(ts —=T[s+ 1]h) + T[s + m + 1]) mod ¢

The Knuth-Morris-Pratt algorithm:

e In pattern matching algorithms, we often compare the pattern characters that do not match in the text
and on occurrence of mismatch we simply through away the information and restart the comparison,
for another set of characters from the text.

e Thus again and again with next incremental position of the text, the characters from pattern are matched.
This ultimately reduces the efficiency of the pattern matching algorithm. Hence Knuth- Morris- Pratt
algorithm came up which avoids the repeated comparison of characters.

e The algorithm is named after the scientists Knuth, Morris and Pratt.

e The basic idea behind the algorithm is to build Prefix table. It is also called array or failure function
table.

e This prefix table is build using prefix and suffix information of pattern.

e The overlapping prefix and suffix is used in KMP algorithm.

Given that pattern characters P[1..¢] match text characters 7' [s+1 .. 5+¢],
what is the least shift 5" > s such that for some k < ¢q,
Given text: abcxabcdabxabcdabcdabcy

Given pattern : abcdabcy

Step 1: we will construct the prefix table for the given pattern as follows.

0 1 2 3 4 5 7
a b C D a b Y
0 0 0 0 1 2 0
Step2: now start matching search for pattern against the text with the help of prefix table.
0|12 |3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20 |21 |22
a|bj|c|x|a|b|c|d|a|b|x (a |b |c |d |a |b |c |d|a |B |c |Y
V[V [V [x
a|bjc|d|a|b]|c |y

The pattern[3] is not matching with text[3]. Hence we find the position using the formula,
Text index of unmatched character — prefixtable[pattern index — 1]

=3 — prefixtable[3-1]

=3-0

=3

That means shift pattern at starting index 3.

Step 3:

011 4 |56 |7 |89 |10|11 (12|13 |14 |15(16|17|18|19|20 |21 22
a|b a|bj|c|dja|b /X |a |[b |c |d |a |[b |c |d|a |B |c |Y
blc|d|a|b|c]|Y
As pattern[0] is not matching with text[3], so shift pattern by one position.
Step 4:
011 4 |56 |7 |89 (10|11 (12|13 |14 |15(16|17|18|19|20 |21 22
a|b a|bj|c|dja|b /X |a |[b |c |d |a |[b |c |d|a |B |c |Y
VIV VN[NV [x
a|bjc|dja|b|c |y
Text index of unmatched character — prefixtable[pattern index — 1]
=10 — prefixtable[6-1]
=10- 2
=8
Step 5:
011 4156 1(7 (89 (10|11 (12 (13|14 |15(16|17|18|19|20 |21 22
a|b a|b|c|dja|b|X |a |[b |c |d |a |[b |c |d|a |B |c |Y
N RRE
a|b|c |d |a |b |c |y
Text index of unmatched character — prefixtable[pattern index — 1]
=10 — prefixtable[2-1]
=10-0
=10
Step 6:
011 4156|789 (10|11 (12|13 |14 |15(16|17|18|19|20 |21 22
a|b a|bj|c|dja|b|X |a |[b |c |d |a |[b |c |d|a |B |c |Y
a |b |c |d |a |b |c |y
Text[10] is not matching with pattern[0]. Hence shift one position next.
Step 7:
011 4 |56 (7 |89 |10(11 (12|13 |14 |15(16|17|18|19|20 |21 22
a |b a|bjc|dja|b|X |a |[b |c |d|a |b |c |[d|a |[B |c |Y
VN [N [V [N Y Y] x

Text index of unmatched character — prefixtable[pattern index — 1]
=18 — prefixtable[7-1]

=18- 3

=15

Step 8:

0|12 (3|4|5|6 |7 |89 |10|11 12|13 |14 |15|16|17|18|19|20 |21 22

a|b|c|x|a|b|c|dja|b|X |a |b |c |d|a |[b |c |d]a |B |c |Y
VIV V[V V[T [TV
a C a C

Thus we found the pattern at starting position 15 in text string.

Insertion sorting:

Insertion sort is usually done by scanning the sorted subarray from right to left until the first element smaller
than or equal to A[n — 1] is encountered to insert A[n — 1] right after that element. Starting with A[1] and

ending with A[n — 1], A[i]is inserted in its appropriate place among the first i elements of the array that have

been already sorted.

ALGORITHM [nsertionSort(A[0..n — 1])

/[Sorts a given array by insertion sort
/MInput: An array A[0..n — 1] of n orderable elements
/[[Output: Array A[0..n — 1]sorted in nondecreasing order
fori < 1ton —1do
v« Ali]
j—i-1
while j > 0 and A[j] > vdo
Alj + 1] < A[j]
i+F—1
Alj+1]«v

' I

A[0]<---<A[jl<A[j+1]<---<A[i-1] | Ali]--- A[n—-1]

smaller than or equal to A[i] greater than A[7]

B2 1 45 B8 D0 29 34 17
45 8391 68 950 29 34 17
45 68 B9 1 90 29 34 17
45 68 8% 901 2% 34 17
29 45 B8 ES95 90 | 34 17
29 324 45 68 B9 90 117
17 289 34 45 B8 BS 20

Example of sorting with insertion sort. A vertical bar separates the sorted
part of the array from the remaining elements; the element being inserted
is in bold.

The number of key comparisons in this algorithm obviously depends on the
nature of the input. In the worst case, A|j| > v is executed the largest number
of times, i.e., forevery j =i — 1, ..., 0. Since v = A[i], it happens if and only if
Alj| = Ali]for j =i —1,..., 0. (Note that we are using the fact that on the ith
iteration of insertion sort all the elements preceding A|7| are the firsti elements in
the input, albeit in the sorted order.) Thus, for the worst-case input, we get A[0] =
All] (fori =1), A[l]= A2 (for i =2), ..., Aln = 2] = A|n — 1] (for i =n — 1).
In other words, the worst-case input is an array of strictly decreasing values. The
number of key comparisons for such an input is

n=1 i—=1 n—1

Cr.r.'rir.-.'r{”) = Z Z 1= Z i = {"_Tl}” = {H}{f72}~

i=1 j=0 i=1

Heap sort:

Heapsort is a comparison-based sorting algorithm that works by building a binary heap data structure and
extracting the maximum element from the heap.

Here is a step-by-step algorithm for the heapsort process:

1. Build a binary heap from the input data:
e Start by treating the input data as a complete binary tree.
e Compare the value of each node with its children and swap the node with the larger child, if necessary, to
maintain the "max heap" property.
e Repeat the above step for each node in the tree until the root node holds the largest value.
2. Extract the maximum element from the heap:
e Swap the root node with the last element in the heap.
e Remove the last element from the heap, as it is now in its correct position in the sorted data.
e Compare the value of the root node with its children and swap the node with the larger child, if necessary,
to maintain the "max heap" property.
e Repeat the above step until the heap is a complete binary tree with all nodes in the correct order.
3. Repeat the above steps until all elements have been extracted and placed in their correct position in the sorted
data.

The running time of heapsort is O(n log n), making it a fast and efficient sorting algorithm for large datasets.

UNIT Il GRAPH ALGORITHMS
Graph algorithms: Representations of graphs - Graph traversal: DFS — BFS -

applications - Connectivity,strong connectivity, bi-connectivity - Minimum spanning
tree: Kruskal’s and Prim’s algorithm- Shortest path: Bellman-Ford algorithm -
Dijkstra’s algorithm - Floyd-Warshall algorithm Network flow: Flow networks - Ford-

Fulkerson method — Matching: Maximum bipartite matching

Representations of graphs :

A graph can be represented in several ways, including:

1. Adjacency matrix / Incidence Matrix

2. Adjacency Linked List/ Incidence Linked List

Adjacency Matrix: It is a two-dimensional matrix of size V x V, where V is the number of
vertices in the graph, and each cell a_{i,j} represents the weight of an edge between vertex iand

vertex j. If there is no edge between vertex i and vertex j, then the value ofa_{i,j} is set to infinity.

For directed graph
Alu][v]={ 1, if there is edge fromu to v

0 otherwise }

For undirected graph
Alu][v]={ 1, if there is edge between u and v

0 otherwise }

For weighted graph

Afu][v]={ value, if there is edge fromuto v
oo, if no edge between u and v }

Adjacency List: In this representation, each vertex is stored as an object that contains a list of its
neighbors along with the weight of the edges connecting it to them. This representation is useful

when the graph is sparse, i.e., it has a small number of edges compared to the number of vertices.

l 2 —— 4 3 ——
[]
2 4 | 5 —_
|
3 6 i___L
4 | 6 7 _]_.I 3
| T3
5| 4 7 |1
!_
& | L
7| & | T

Graph Traversal:

Visiting of each and every vertex in the graph only once is called as Graph traversal.

There are two types of Graph traversal.

1. Depth First Traversal/ Search (DFS)
2. Breadth First Traversal/ Search (BFS)
Depth First Traversal/ Search

(DES)

Depth-first search is a generalization of preorder traversal. Starting at some vertex, v,
we process v and then recursively traverse all vertices adjacent to v. If this process is performed
on atree, then all tree vertices are systematically visited in a total of O(|E|) time, since |E| = (|V]).

We need to be careful to avoid cycles. To do this, when we visit a vertex v, we mark it
visited, since now we have been there, and recursively call depth-first search on all adjacent
vertices that are not already marked.

The two important key points of depth first search

1. If path exists from one node to another node walk across the edge — exploring the edge
2. If path does not exist from one specific node to any other nodes, return to the previous node where

we have been before — backtracking
Procedure for DFES

Starting at some vertex V, we process V and then recursively traverse all the vertices adjacent
to V. This process continues until all the vertices are processed. If some vertex is not processed
recursively, then it will be processed by using backtracking. If vertex W is visited from V, then
the vertices are connected by means of tree edges. If the edges not included in tree, then theyare

represented by back edges. At the end of this process, it will construct a tree called as DFS tree.

- @

«

Routine to perform a de