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AD3491 Fundamentals of Data Science and Analytics 

UNIT I 

1) Introduction to Data Science 

a) What is Data Science? 

 
Data Science is a combination of multiple disciplines that uses statistics, data analysis, and 

machine learning to analyze data and to extract knowledge and insights from it. 

 
Data Science is about data gathering, analysis and decision-making. 

 
Data Science is about finding patterns in data, through analysis, and make future predictions. 

By using Data Science, companies are able to make: 

 Better decisions (should we choose A or B) 

 Predictive analysis (what will happen next?) 

 Pattern discoveries (find pattern, or maybe hidden information in the data) 
 

 

b) Where is Data Science Needed? 

 
Data Science is used in many industries in the world today, e.g. banking, consultancy, healthcare, 

and manufacturing. 

 
Examples of where Data Science is needed: 

 

 

Data Science can be applied in nearly every part of a business where data is available. Examples 

are: 

 For route planning: To discover the best routes to ship 
 To foresee delays for flight/ship/train etc. (through predictive analysis) 
 To create promotional offers 

 To find the best suited time to deliver goods 
 To forecast the next years revenue for a company 
 To analyze health benefit of training 
 To predict who will win elections 



  

 
c) What is Data? 

 

Unstructured data is not organized. We must organize the data for analysis 
purposes. 

 Consumer goods 
 Stock markets 
 Industry 

 Politics 
 Logistic companies 
 E-commerce 

Data is a collection of information. 

 
One purpose of Data Science is to structure data, making it interpretable and easy to work 

with. Data can be categorized into two groups: 

Structured data 

Unstructured 

data Structured Data 

Unstructured Data 



  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 

d) How to Structure Data? 

 
We can use an array or a database table to structure or present data. 

Example of an array: 

[80, 85, 90, 95, 100, 105, 110, 115, 120, 125] 

 
The following example shows how to create an array in Python: 

 

 

e) Data Science & Python 

Python 

 
Python is a programming language widely used by Data Scientists. 

 
Python has in-built mathematical libraries and functions, making it easier to calculate 

mathematical problems and to perform data analysis. 

 
We will provide practical examples using Python. 

Array = [80, 85, 90, 95, 100, 105, 110, 115, 120, 125] 
print(Array) 



  

Python Libraries 

 
Python has libraries with large collections of mathematical functions and analytical tools. 

 

In this course, we will use the following libraries: 

 
 Pandas - This library is used for structured data operations, like import 

CSV files, create dataframes, and data preparation 
 Numpy - This is a mathematical library. Has a powerful N-dimensional 

array object, linear algebra, Fourier transform, etc. 
 Matplotlib - This library is used for visualization of data. 
 SciPy - This library has linear algebra modules 

 
We will use these libraries throughout the course to create examples. 

 

2) Benefits and uses for Data Science: 

 
1. In Search Engines 

The most useful application of Data Science is Search Engines. As we know when we want to 

search for something on the internet, we mostly used Search engines like Google, Yahoo, 

Safari, Firefox, etc. So Data Science is used to get Searches faster. 

For Example, When we search something suppose “Data Structure and algorithm courses ” 

then at that time on the Internet Explorer we get the first link of GeeksforGeeks Courses. This 

happens because the GeeksforGeeks website is visited most in order to get information 

regarding Data Structure courses and Computer related subjects. So this analysis is Done using 

Data Science, and we get the Topmost visited Web Links. 

2. In Transport 

Data Science also entered into the Transport field like Driverless Cars. With the help of 

Driverless Cars, it is easy to reduce the number of Accidents. 

For Example, In Driverless Cars the training data is fed into the algorithm and with the help 

of Data Science techniques, the Data is analyzed like what is the speed limit in Highway, Busy 

Streets, Narrow Roads, etc. And how to handle different situations while driving etc. 

3. In Finance 

Data Science plays a key role in Financial Industries. Financial Industries always have an issue 

of fraud and risk of losses. Thus, Financial Industries needs to automate risk of loss analysis in 

order to carry out strategic decisions for the company. Also, Financial Industries uses Data 

Science Analytics tools in order to predict the future. It allows the companies to predict 

customer lifetime value and their stock market moves. 

For Example, In Stock Market, Data Science is the main part. In the Stock Market, Data 

Science is used to examine past behavior with past data and their goal is to examine the future 

outcome. Data is analyzed in such a way that it makes it possible to predict future stock prices 

over a set timetable. 

https://www.w3schools.com/python/numpy_intro.asp
https://www.w3schools.com/python/matplotlib_intro.asp
https://www.w3schools.com/python/scipy_intro.asp


  

4. In E-Commerce 

E-Commerce Websites like Amazon, Flipkart, etc. uses data Science to make a better user 

experience with personalized recommendations. 

For Example, When we search for something on the E-commerce websites we get suggestions 

similar to choices according to our past data and also we get recommendations according to 

most buy the product, most rated, most searched, etc. This is all done with the help of Data 

Science. 

5. In Health Care 

In the Healthcare Industry data science act as a boon. Data Science is used for: 

 Detecting Tumor.

 Drug discoveries.

 Medical Image Analysis.

 Virtual Medical Bots.

 Genetics and Genomics.

 Predictive Modeling for Diagnosis etc.

6. Image Recognition 

Currently, Data Science is also used in Image Recognition. For Example, When we upload 

our image with our friend on Facebook, Facebook gives suggestions Tagging who is in the 

picture. This is done with the help of machine learning and Data Science. When an Image is 

Recognized, the data analysis is done on one’s Facebook friends and after analysis, if the faces 

which are present in the picture matched with someone else profile then Facebook suggests us 

auto-tagging. 

7. Targeting Recommendation 

Targeting Recommendation is the most important application of Data Science. Whatever the 

user searches on the Internet, he/she will see numerous posts everywhere. This can be 

explained properly with an example: Suppose I want a mobile phone, so I just Google search it  

and after that, I changed my mind to buy offline. Data Science helps those companies who are 

paying for Advertisements for their mobile. So everywhere on the internet in the social media, 

in the websites, in the apps everywhere I will see the recommendation of that mobile phone 

which I searched for. So this will force me to buy online. 

8. Airline Routing Planning 

With the help of Data Science, Airline Sector is also growing like with the help of it, it 

becomes easy to predict flight delays. It also helps to decide whether to directly land into the 

destination or take a halt in between like a flight can have a direct route from Delhi to the 

U.S.A or it can halt in between after that reach at the destination. 

9. Data Science in Gaming 

In most of the games where a user will play with an opponent i.e. a Computer Opponent, data 

science concepts are used with machine learning where with the help of past data the Computer 

will improve its performance. There are many games like Chess, EA Sports, etc. will use Data 

Science concepts. 

10. Medicine and Drug Development 

The process of creating medicine is very difficult and time-consuming and has to be done with 

full disciplined because it is a matter of Someone’s life. Without Data Science, it takes lots of 



  

time, resources, and finance or developing new Medicine or drug but with the help of Data 

Science, it becomes easy because the prediction of success rate can be easily determined based 

on biological data or factors. The algorithms based on data science will forecast how this will 

react to the human body without lab experiments. 

11. In Delivery Logistics 

Various Logistics companies like DHL, FedEx, etc. make use of Data Science. Data Science 

helps these companies to find the best route for the Shipment of their Products, the best time 

suited for delivery, the best mode of transport to reach the destination, etc. 

12. Autocomplete 

AutoComplete feature is an important part of Data Science where the user will get the facility 

to just type a few letters or words, and he will get the feature of auto-completing the line. In 

Google Mail, when we are writing formal mail to someone so at that time data science concept 

of Autocomplete feature is used where he/she is an efficient choice to auto-complete the whole 

line. Also in Search Engines in social media, in various apps, AutoComplete feature is widely 

used. 

 

3) Facets of Data Science 

Visualize your data with facets 

In Data Science and Big Data you’ll come across many different types of data, and each of them 

tends to require different tools and techniques. The main categories of data are these: 

 

1. Structured 

 
2. Unstructured 

 
3. Natural Language 

 
4. Machine-generated 

 
5. Graph-based 

 
6. Audio, video and images 

 
7. Streaming 



  

Let’s explore all these interesting data types.. 

Structured Data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig : An Excel Sheet is an example of Structured Data 

 

Structured data is the data that depends on a data model and resides in a fixed field 

within a record. It’s often easy to store structured data in tables within data bases or 

Excel files. SQL, Structured Query Language, is the preferred way to manage and query 

data that resides in data bases. You may also come across structured data that might give 

you a hard time storing it in a traditional relational database. 

 

Hierarchical data such as a family tree is one such example.The world isn’t made up of 

structured data, though; it’s imposed upon it by humans and machines. 



  

Unstructured Data 

 

text, it’s a challenge to find the number of people who have written an email complaint 

about a specific employee because so many ways exist to refer to a person, for example. 

The thousands of different languages and dialects out there further complicate this. 

A human-written email, is also a perfect example of natural language data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Unstructured data is data that isn’t easy to fit into a data 

model because the content is context-specific or varying. One 

example of unstructured data is your regular email. Although 

email contains structured elements such as the sender, title, and 

body 



  

Natural Language 

 

 
Natural language is a special type of unstructured data ;it’s challenging to process 

because it requires knowledge of specific data science techniques and linguistics. 

 

The natural language processing community has had success in entity recognition, 

topic recognition, summarization, text completion, and sentiment analysis, 

but models trained in one domain don’t generalize well to other domains. Even state-of- 

the-art techniques aren’t able to decipher the meaning of every piece of text. This 

shouldn’t be a surprise though: humans struggle with natural language as well. It’s 

ambiguous by nature. The concept of meaning itself is questionable here. Have two 

people listen to the same conversation. Will they get the same meaning? The meaning of 

the same words can vary when coming from someone upset or joyous. 

 

Machine-generated Data 

 

 
Machine-generated data is informative that’s automatically created by a 

computer, process, application or other machine without human 

intervention. Machine-generated data is becoming a major data resource and will 

continue to do so. 

 

The analysis of Machine data relies on highly scalable tools, due to high 

volume and speed. 

 

Examples are, web server logs, call detail records, network event logs and telemetry. 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example for Machine data 

 

 
This is not the best approach for highly interconnected or “networked” data, where the 

relationship between entities have a valuable role to play. 

 

Graph-based or Network Data 

 

 
“Graph data” can be a confusing term because any data can be shown in a graph. “Graph” 

in this case points to mathematical graph theory. In graph theory, a graph is 

a mathematical structure to model pair-wise relationships between objects. 

Graph or network data is, in short, data that focuses on the relationship or 

adjacency of objects. 

 

The graph structures use nodes, edges, and properties to represent and store 

graphical data. 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Friends in social network is an example of Graph-based 

data 

 
Graph-based data is a natural way to represent social networks, and its structure allows 

you to calculate specific metrics such as the influence of a person and the shortest path 

between two people. 

 

Graph databases are used to store graph-based data and are queried with specialized 

query languages such as SPARQL. 

 

Graph data poses its challenges, but for a computer interpreting additive and image data, 

it can be ever more difficult. 



  

Audio, Images and Videos 

 
 

We have various libraries, development languages and IDEs commonly used in the field, 

such as : 

Audio, image, and video are data types that pose specific challenges to a data scientist. 

Tasks that are trivial for humans, such as recognizing objects in pictures, turn out to be 

challenging for computers. 

Multimedia data in the form of audio, video, images and sensor signals have become an 

integral part of everyday life. Moreover, they have revolutionized product testing and 

evidence collection by providing multiple sources of data for quantitative and systematic 

assessment. 



  

 MATLAB 

 
 openCV 

 
 ImageJ 

 
 Python 

 
 R 

 
 Java 

 
 C 

 
 C++ 

 
 C# 

 

 
Streaming Data 

 

 
While streaming data can take almost any of the previous forms, it has an extra property. 

The data flows into the system when an event happens instead of being 

loaded into a data store in a batch. Although it isn’t really a different type of data, we 

treat it here as much because you need to adapt your process to deal with this type of 

information. 

 

Examples are the “What’s trending” on Twitter, live sporting or music events and the 

stock market. 

 
 

 



  

4) The data science process:  
 

The typical data science process consists of six steps: 
 

Figure: 1. The six steps of the data science process: 
 

Overview of the data science process: 



  

Figure 1 summarizes the data science process and shows the main steps and actions you’ll take during a 

project. 

 

1. The first step of this process is setting a research goal. The main purpose here is making sure 

all the stakeholders understand the what, how, and why of the project. In every serious project 

this will result in a project charter. 

 

2. The second phase is data retrieval. You want to have data available for analysis, so this step 

includes finding suitable data and getting access to the data from the data owner. The result is 

data in its raw form, which probably needs polishing and transformation before it becomes 

usable. 

 

3. Now that you have the raw data, it’s time to prepare it. This includes transforming the data 

from a raw form into data that’s directly usable in your models. To achieve this, you’ll detect and 

correct different kinds of errors in the data, combine data from different data sources, and 

transform it. If you have successfully completed this step, you can progress to data visualization 

and modeling. 

 

4. The fourth step is data exploration. The goal of this step is to gain a deep understanding of 

the data. You’ll look for patterns, correlations, and deviations based on visual and descriptive 

techniques. The insights you gain from this phase will enable you to start modeling. 

 

5. Finally, we get to the sexiest part: model building (often referred to as “data modeling” 

throughout this book). It is now that you attempt to gain the insights or make the predictions 

stated in your project charter. Now is the time to bring out the heavy guns, but remember 

research has taught us that often (but not always) a combination of simple models tends to 

outperform one complicated model. If you’ve done this phase right, you’re almost done. 

 

6. The last step of the data science model is presenting your results and automating the 

analysis, if needed. One goal of a project is to change a process and/or make better decisions. 

You may still need to convince the business that your findings will indeed change the business 

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig01


  

 
 

 

 

process as expected. This is where you can shine in your influencer role. The importance of this 

step is more apparent in projects on a strategic and tactical level. Certain projects require you to 

perform the business process over and over again, so automating the project will save time. 

5)Setting the research goal  

Figure 2. Step 1: Setting the research goal 

Step 1: Defining research goals and creating a project charter 

 
A project starts by understanding the what, the why, and the how of your project (figure 2). What 

does the company expect you to do? And why does management place such a value on your 

research? Is it part of a bigger strategic picture or a “lone wolf” project originating from an 

opportunity someone detected? Answering these three questions (what, why, how) is the goal of 

the first phase, so that everybody knows what to do and can agree on the best course of action. 

The outcome should be a clear research goal, a good understanding of the context, well-defined 

deliverables, and a plan of action with a timetable. This information is then best placed in a 

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig02


  





A clear research goal 

The project mission and context 





How you’re going to perform your analysis 

What resources you expect to use 





Proof that it’s an achievable project, or proof of concepts 

Deliverables and a measure of success 

project charter. The length and formality can, of course, differ between projects and companies. 

In this early phase of the project, people skills and business acumen are more important than 

great technical prowess, which is why this part will often be guided by more senior personnel. 

1. Spend time understanding the goals and context of your research 

 

An essential outcome is the research goal that states the purpose of your assignment in a clear 

and focused manner. Understanding the business goals and context is critical for project success. 

Continue asking questions and devising examples until you grasp the exact business expectations, 

identify how your project fits in the bigger picture, appreciate how your research is going to 

change the business, and understand how they’ll use your results. Nothing is more frustrating 

than spending months researching something until you have that one moment of brilliance and 

solve the problem, but when you report your findings back to the organization, everyone 

immediately realizes that you misunderstood their question. Don’t skim over this phase lightly. 

Many data scientists fail here: despite their mathematical wit and scientific brilliance, they never 

seem to grasp the business goals and context. 

2. Create a project charter 

 

Clients like to know upfront what they’re paying for, so after you have a good understanding of 

the business problem, try to get a formal agreement on the deliverables. All this information is 

best collected in a project charter. For any significant project this would be mandatory. 

 

A project charter requires teamwork, and your input covers at least the following: 



  

 
 

 

 

6) Retrieving data  

Step 2: Retrieving data  

 

 

The next step in data science is to retrieve the required data (figure 3). Sometimes you need to go into 

the field and design a data collection process yourself, but most of the time you won’t be involved in this 

step. Many companies will have already collected and stored the data for you, and what they don’t have 

can often be bought from third parties. Don’t be afraid to look outside your organization for data, 

because more and more organizations are making even high-quality data freely available for public and 

commercial use. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 A timeline 

Your client can use this information to make an estimation of the project costs and the data and 

people required for your project to become a success. 

 

Data can be stored in many forms, ranging from simple text files to tables in a database. The 

objective now is acquiring all the data you need. This may be difficult, and even if you succeed, 

data is often like a diamond in the rough: it needs polishing to be of any use to you. 

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig03


  

 
 

1. Start with data stored within the company 

 

Your first act should be to assess the relevance and quality of the data that’s readily available 

within your company. Most companies have a program for maintaining key data, so much of the 

cleaning work may already be done. This data can be stored in official data repositories such 

as databases, data marts, data warehouses, and data lakes maintained by a team of IT 

professionals. The primary goal of a database is data storage, while a data warehouse is designed 

for reading and analyzing that data. A data mart is a subset of the data warehouse and geared 

toward serving a specific business unit. While data warehouses and data marts are home to 

preprocessed data, data lakes contains data in its natural or raw format. But the possibility exists 

that your data still resides in Excel files on the desktop of a domain expert. 

 

Finding data even within your own company can sometimes be a challenge. As companies grow, 

their data becomes scattered around many places. Knowledge of the data may be dispersed as 

people change positions and leave the company. Documentation and metadata aren’t always the 

top priority of a delivery manager, so it’s possible you’ll need to develop some Sherlock 

Holmes–like skills to find all the lost bits. 

 

Getting access to data is another difficult task. Organizations understand the value and sensitivity 

of data and often have policies in place so everyone has access to what they need and nothing 

more. These policies translate into physical and digital barriers called Chinese walls. These 

“walls” are mandatory and well-regulated for customer data in most countries. This is for good 

reasons, too; imagine everybody in a credit card company having access to your spending habits. 

Getting access to the data may take time and involve company politics. 

2. Don’t be afraid to shop around 

 

If data isn’t available inside your organization, look outside your organization’s walls. Many 

companies specialize in collecting valuable information. For instance, Nielsen and GFK are well 



  

 
Table 2.1. A list of open-data providers that should get you started 

 

Open data site Description 
 

Data.gov The home of the US Government’s open data 
 

https://open- 

data.europa.eu/ 

The home of the European Commission’s open data 

Freebase.org An open database that retrieves its information from sites like 

Wikipedia, MusicBrains, and the SEC archive 

Data.worldbank.org Open data initiative from the World Bank 

Aiddata.org Open data for international development 

Open.fda.gov Open data from the US Food and Drug Administration 
 

 

known for this in the retail industry. Other companies provide data so that you, in turn, can 

enrich their services and ecosystem. Such is the case with Twitter, LinkedIn, and Facebook. 

 

Although data is considered an asset more valuable than oil by certain companies, more and 

more governments and organizations share their data for free with the world. This data can be of 

excellent quality; it depends on the institution that creates and manages it. The information they 

share covers a broad range of topics such as the number of accidents or amount of drug abuse in 

a certain region and its demographics. This data is helpful when you want to enrich proprietary 

data but also convenient when training your data science skills at home. Table 2.1 shows only a 

small selection from the growing number of open-data providers. 

3. Do data quality checks now to prevent problems later 

 
Expect to spend a good portion of your project time doing data correction and cleansing, 

sometimes up to 80%. The retrieval of data is the first time you’ll inspect the data in the data 

science process. Most of the errors you’ll encounter during the data-gathering phase are easy to 

https://open-data.europa.eu/
https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02table01


  

spot, but being too careless will make you spend many hours solving data issues that could have 

been prevented during data import. 

 

You’ll investigate the data during the import, data preparation, and exploratory phases. The 

difference is in the goal and the depth of the investigation. During data retrieval, you check to 

see if the data is equal to the data in the source document and look to see if you have the right 

data types. This shouldn’t take too long; when you have enough evidence that the data is similar 

to the data you find in the source document, you stop. With data preparation, you do a more 

elaborate check. If you did a good job during the previous phase, the errors you find now are also 

present in the source document. The focus is on the content of the variables: you want to get rid 

of typos and other data entry errors and bring the data to a common standard among the data sets. 

For example, you might correct USQ to USA and United Kingdom to UK. During 

the exploratory phase your focus shifts to what you can learn from the data. Now you assume the 

data to be clean and look at the statistical properties such as distributions, correlations, and 

outliers. You’ll often iterate over these phases. For instance, when you discover outliers in the 

exploratory phase, they can point to a data entry error. Now that you understand how the quality 

of the data is improved during the process, we’ll look deeper into the data preparation step. 

 

 

7) Data preparation  
 

Step 3: Cleansing, integrating, and transforming data 

 
The data received from the data retrieval phase is likely to be “a diamond in the rough.” Your 

task now is to sanitize and prepare it for use in the modeling and reporting phase. Doing so is 

tremendously important because your models will perform better and you’ll lose less time trying 

to fix strange output. It can’t be mentioned nearly enough times: garbage in equals garbage out. 

Your model needs the data in a specific format, so data transformation will always come into 

play. It’s a good habit to correct data errors as early on in the process as possible. However, this 



  

 

Figure 4. Step 3: Data preparation: 

isn’t always possible in a realistic setting, so you’ll need to take corrective actions in your 

program. 

 

Figure 4 shows the most common actions to take during the data cleansing, integration, and 

transformation phase. 

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig04


  

This mind map may look a bit abstract for now, but we’ll handle all of these points in more detail 

in the next sections. You’ll see a great commonality among all of these actions. 

1. Cleansing data 

 

Data cleansing is a subprocess of the data science process that focuses on removing errors in 

your data so your data becomes a true and consistent representation of the processes it originates 

from. 

 

By “true and consistent representation” we imply that at least two types of errors exist. The first 

type is the interpretation error, such as when you take the value in your data for granted, like 

saying that a person’s age is greater than 300 years. The second type of error points 

to inconsistencies between data sources or against your company’s standardized values. An 

example of this class of errors is putting “Female” in one table and “F” in another when they 

represent the same thing: that the person is female. Another example is that you use Pounds in 

one table and Dollars in another. Too many possible errors exist for this list to be exhaustive, 

but table 2.2 shows an overview of the types of errors that can be detected with easy checks—the 

“low hanging fruit,” as it were. 

Table 2.2. An overview of common errors 

 

General solution 
 

Try to fix the problem early in the data acquisition chain or else fix it in the program. 
 

Error description Possible solution 

Errors pointing to false values within one data set 

Mistakes during data entry Manual overrules 

Redundant white space Use string functions 

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02table02


  

General solution 
 

Impossible values Manual overrules 
 

Missing values Remove observation or value 
 

Outliers Validate and, if erroneous, treat as missing value (remove or 

insert) 

 
 
 
 
 
 

Errors pointing to inconsistencies between data sets 
 

Deviations from a code book Match on keys or else use manual overrules 
 
 

Different units of 

measurement 

 

Recalculate 

 

Different levels of aggregation Bring to same level of measurement by aggregation or 

extrapolation 
 
 
 

Sometimes you’ll use more advanced methods, such as simple modeling, to find and identify data errors; 

diagnostic plots can be especially insightful. For example, in figure 5 we use a measure to identify data 

points that seem out of place. We do a regression to get acquainted with the data and detect the 

influence of individual observations on the regression line. When a single observation has too much 

influence, this can point to an error in the data, but it can also be a valid point. At the data cleansing 

stage, these advanced methods are, however, rarely applied and often regarded by certain data 

scientists as overkill. 
 

Figure 5. The encircled point influences the model heavily and is worth investigating because it 

can point to a region where you don’t have enough data or might indicate an error in the data, 

but it also can be a valid data point. 

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig05


  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2.3. Detecting outliers on simple variables with a frequency table 

 

Value Count 

Good 1598647 

Bad 1354468 

Godo 15 

Bade 1 

 

Now that we’ve given the overview, it’s time to explain these errors in more detail. 

 

Data entry errors 

 
Data collection and data entry are error-prone processes. They often require human intervention, 

and because humans are only human, they make typos or lose their concentration for a second 

and introduce an error into the chain. But data collected by machines or computers isn’t free 

from errors either. Errors can arise from human sloppiness, whereas others are due to machine or 

hardware failure. Examples of errors originating from machines are transmission errors or bugs 

in the extract, transform, and load phase (ETL). 



  

Most errors of this type are easy to fix with simple assignment statements and if-then-else rules: 
 
if x == "Godo": 

x = "Good" 
if x == "Bade": 
  x = "Bad"  

 

Redundant whitespace 

 

Whitespaces tend to be hard to detect but cause errors like other redundant characters would. 

Who hasn’t lost a few days in a project because of a bug that was caused by whitespaces at the 

end of a string? You ask the program to join two keys and notice that observations are missing 

from the output file. After looking for days through the code, you finally find the bug. Then 

comes the hardest part: explaining the delay to the project stakeholders. The cleaning during the 

ETL phase wasn’t well executed, and keys in one table contained a whitespace at the end of a 

string. This caused a mismatch of keys such as “FR” – “FR”, dropping the observations that 

couldn’t be matched. 

 

If you know to watch out for them, fixing redundant whitespaces is luckily easy enough in most 

programming languages. They all provide string functions that will remove the leading and 

trailing whitespaces. For instance, in Python you can use the 

and trailing spaces. 

function to remove leading 

 

FIXING CAPITAL LETTER MISMATCHES 

 

Capital letter mismatches are common. Most programming languages make a distinction 

between “Brazil” and “brazil”. In this case you can solve the problem by applying a function that 

returns both strings in lowercase, such as .lower() in Python. "Brazil".lower() == 

"brazil".lower() should result in true . 

strip() 

copy 



  

 
 

 

 

 

 

 

 

, 
 

 

. 

Impossible values and sanity checks 

 
Sanity checks are another valuable type of data check. Here you check the value against 

physically or theoretically impossible values such as people taller than 3 meters or someone with 

an age of 299 years. Sanity checks can be directly expressed with rules: 

check = 0 <= age <= 120  

Figure 6. Distribution plots are helpful in detecting outliers and helping you understand the 

variable. 

Outliers 

 
An outlier is an observation that seems to be distant from other observations or, more specifically 

one observation that follows a different logic or generative process than the other observations. 

The easiest way to find outliers is to use a plot or a table with the minimum and maximum values 

An example is shown in figure 6. 
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Table 2.4. An overview of techniques to handle missing data 

 

Technique Advantage Disadvantage 
 

Omit the values Easy to perform You lose the information from an 

observation 
 

Set value to null Easy to perform Not every modeling technique and/or 

implementation can handle null values 
 
 

Impute a static value 

such as 0 or the mean 

 

Easy to perform You don’t 

lose information from the 

other variables in the 

observation 

 

Can lead to false estimations from a 

model 

 

Impute a value from an 

estimated or theoretical 

Does not disturb the 

model as much 

Harder to execute You make data 

assumptions 

The plot on the top shows no outliers, whereas the plot on the bottom shows possible outliers on 

the upper side when a normal distribution is expected. The normal distribution, or Gaussian 

distribution, is the most common distribution in natural sciences. It shows most cases occurring 

around the average of the distribution and the occurrences decrease when further away from it. 

The high values in the bottom graph can point to outliers when assuming a normal distribution. 

As we saw earlier with the regression example, outliers can gravely influence your data 

modeling, so investigate them first. 

Dealing with missing values 

 
Missing values aren’t necessarily wrong, but you still need to handle them separately; certain 

modeling techniques can’t handle missing values. They might be an indicator that something 

went wrong in your data collection or that an error happened in the ETL process. Common 

techniques data scientists use are listed in table 2.4. 
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Technique Advantage Disadvantage 
 

distribution 
 
 

Modeling the value 

(nondependent) 

 

Does not disturb the 

model too much 

 

Can lead to too much confidence in the 

model Can artificially raise dependence 

among the variables Harder to execute 

You make data assumptions 

 
 

Which technique to use at what time is dependent on your particular case. If, for instance, you 

don’t have observations to spare, omitting an observation is probably not an option. If the 

variable can be described by a stable distribution, you could impute based on this. However, 

maybe a missing value actually means “zero”? This can be the case in sales for instance: if no 

promotion is applied on a customer basket, that customer’s promo is missing, but most likely it’s 

also 0, no price cut. 

Deviations from a code book 

 

Detecting errors in larger data sets against a code book or against standardized values can be 

done with the help of set operations. A code book is a description of your data, a form of 

metadata. It contains things such as the number of variables per observation, the number of 

observations, and what each encoding within a variable means. (For instance “0” equals 

“negative”, “5” stands for “very positive”.) A code book also tells the type of data you’re looking 

at: is it hierarchical, graph, something else? 

 

You look at those values that are present in set A but not in set B. These are values that should be 

corrected. It’s no coincidence that sets are the data structure that we’ll use when we’re working 

in code. It’s a good habit to give your data structures additional thought; it can save work and 

improve the performance of your program. 



  

If you have multiple values to check, it’s better to put them from the code book into a table and 

use a difference operator to check the discrepancy between both tables. This way, you can profit 

from the power of a database directly. More on this in chapter 5. 

Different units of measurement 

 

When integrating two data sets, you have to pay attention to their respective units of 

measurement. An example of this would be when you study the prices of gasoline in the world. 

To do this you gather data from different data providers. Data sets can contain prices per gallon 

and others can contain prices per liter. A simple conversion will do the trick in this case. 

Different levels of aggregation 

 

Having different levels of aggregation is similar to having different types of measurement. An 

example of this would be a data set containing data per week versus one containing data per 

work week. This type of error is generally easy to detect, and summarizing (or the 

inverse, expanding) the data sets will fix it. 
 

After cleaning the data errors, you combine information from different data sources. But before 

we tackle this topic we’ll take a little detour and stress the importance of cleaning data as early as 

possible. 

2. Correct errors as early as possible 

 

A good practice is to mediate data errors as early as possible in the data collection chain and to 

fix as little as possible inside your program while fixing the origin of the problem. Retrieving 

data is a difficult task, and organizations spend millions of dollars on it in the hope of making 

better decisions. The data collection process is error-prone, and in a big organization it involves 

many steps and teams. 

 

Data should be cleansed when acquired for many reasons: 
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 Not everyone spots the data anomalies. Decision-makers may make costly mistakes on 
 

information based on incorrect data from applications that fail to correct for the faulty data. 

 If errors are not corrected early on in the process, the cleansing will have to be done for every 
 

project that uses that data. 

 Data errors may point to a business process that isn’t working as designed. For instance, both 
 

authors worked at a retailer in the past, and they designed a couponing system to attract more 
 

people and make a higher profit. During a data science project, we discovered clients who 
 

abused the couponing system and earned money while purchasing groceries. The goal of the 
 

couponing system was to stimulate cross-selling, not to give products away for free. This flaw 
 

cost the company money and nobody in the company was aware of it. In this case the data 
 

wasn’t technically wrong but came with unexpected results. 

 Data errors may point to defective equipment, such as broken transmission lines and defective 
 

sensors. 

 Data errors can point to bugs in software or in the integration of software that may be critical to 
 

the company. While doing a small project at a bank we discovered that two software 
 

applications used different local settings. This caused problems with numbers greater than 
 

1,000. For one app the number 1.000 meant one, and for the other it meant one thousand. 
 

Fixing the data as soon as it’s captured is nice in a perfect world. Sadly, a data scientist doesn’t 

always have a say in the data collection and simply telling the IT department to fix certain things 

may not make it so. If you can’t correct the data at the source, you’ll need to handle it inside your 

code. Data manipulation doesn’t end with correcting mistakes; you still need to combine your 

incoming data. 

 

As a final remark: always keep a copy of your original data (if possible). Sometimes you start 

cleaning data but you’ll make mistakes: impute variables in the wrong way, delete outliers that 

had interesting additional information, or alter data as the result of an initial misinterpretation. If 

you keep a copy you get to try again. For “flowing data” that’s manipulated at the time of arrival, 

this isn’t always possible and you’ll have accepted a period of tweaking before you get to use the 



  

data you are capturing. One of the more difficult things isn’t the data cleansing of individual data 

sets however, it’s combining different sources into a whole that makes more sense. 

3. Combining data from different data sources 

 

Your data comes from several different places, and in this substep we focus on integrating these 

different sources. Data varies in size, type, and structure, ranging from databases and Excel files 

to text documents. 

 

We focus on data in table structures in this chapter for the sake of brevity. It’s easy to fill entire 

books on this topic alone, and we choose to focus on the data science process instead of 

presenting scenarios for every type of data. But keep in mind that other types of data sources 

exist, such as key-value stores, document stores, and so on, which we’ll handle in more 

appropriate places in the book. 

The different ways of combining data 

 

You can perform two operations to combine information from different data sets. The first 

operation is joining: enriching an observation from one table with information from another table. 

The second operation is appending or stacking: adding the observations of one table to those of 

another table. 

 

When you combine data, you have the option to create a new physical table or a virtual table by 

creating a view. The advantage of a view is that it doesn’t consume more disk space. Let’s 

elaborate a bit on these methods. 

Joining tables 

 

Joining tables allows you to combine the information of one observation found in one table with 

the information that you find in another table. The focus is on enriching a single observation. 

Let’s say that the first table contains information about the purchases of a customer and the other 



  

 

 

 

 

 

Figure 7. Joining two tables on the Item and Region keys 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To join tables, you use variables that represent the same object in both tables, such as a date, a 

country name, or a Social Security number. These common fields are known as keys. When 

these keys also uniquely define the records in the table they are called primary keys. One table 

may have buying behavior and the other table may have demographic information on a person. 

In figure 7 both tables contain the client name, and this makes it easy to enrich the client 

expenditures with the region of the client. People who are acquainted with Excel will notice the 

similarity with using a lookup function. 

 

The number of resulting rows in the output table depends on the exact join type that you use. We 

introduce the different types of joins later in the book. 

Appending tables 

 

Appending or stacking tables is effectively adding observations from one table to another 

table. Figure 8 shows an example of appending tables. One table contains the observations from 

the month January and the second table contains observations from the month February. The 

result of appending these tables is a larger one with the observations from January as well as 

February. The equivalent operation in set theory would be the union, and this is also the 

table contains information about the region where your customer lives. Joining the tables allows 

you to combine the information so that you can use it for your model, as shown in figure 2.7. 
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Figure 8. Appending data from tables is a common operation but requires an equal structure in 

the tables being appended. 
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Using views to simulate data joins and appends 

 
To avoid duplication of data, you virtually combine data with views. In the previous example we 

took the monthly data and combined it in a new physical table. The problem is that we duplicated 

the data and therefore needed more storage space. In the example we’re working with, that may 

not cause problems, but imagine that every table consists of terabytes of data; then it becomes 

problematic to duplicate the data. For this reason, the concept of a view was invented. A view 

behaves as if you’re working on a table, but this table is nothing but a virtual layer that combines 

the tables for you. Figure 9 shows how the sales data from the different months is combined 

virtually into a yearly sales table instead of duplicating the data. Views do come with a drawback 

however. While a table join is only performed once, the join that creates the view is recreated 

every time it’s queried, using more processing power than a pre-calculated table would have. 

command in SQL, the common language of relational databases. Other set operators are also 

used in data science, such as set difference and intersection. 
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Figure 9. A view helps you combine data without replication. 

 

Figure 2.10. Growth, sales by product class, and rank sales are examples of derived and 

aggregate measures. 
 

 

Product class 

  

Product 

  

Sales in $ 

  

Sales t-1 in $ 

  

Growth 

  

Sales by product class 

  

Rank sales 
 

A 
 

B 
 

X 
 

Y 
 

(X-Y) / Y 
 

AX 
 

NX 

 

Sport 
 

Sport 1 
 

95 
 

98 
 

–3.06% 
 

215 
 

2 

 

Sport 
 

Sport 2 
 

120 
 

132 
 

–9.09% 
 

215 
 

1 

 

Shoes 
 

Shoes 1 
 

10 
 

6 
 

66.67% 
 

10 
 

3 

Enriching aggregated measures 

 
Data enrichment can also be done by adding calculated information to the table, such as the total 

number of sales or what percentage of total stock has been sold in a certain region (figure 10) 
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Extra measures such as these can add perspective. Looking at figure 10, we now have an 

aggregated data set, which in turn can be used to calculate the participation of each product 

within its category. This could be useful during data exploration but more so when creating data 

models. As always this depends on the exact case, but from our experience models with “relative 

measures” such as % sales (quantity of product sold/total quantity sold) tend to outperform 

models that use the raw numbers (quantity sold) as input. 

4. Transforming data 

 

Certain models require their data to be in a certain shape. Now that you’ve cleansed and 

integrated the data, this is the next task you’ll perform: transforming your data so it takes a 

suitable form for data modeling. 

Transforming data 

 

Relationships between an input variable and an output variable aren’t always linear. Take, for 

instance, a relationship of the form y = aebx. Taking the log of the independent variables 

simplifies the estimation problem dramatically. Figure 11 shows how transforming the input 

variables greatly simplifies the estimation problem. Other times you might want to combine two 

variables into a new variable. 

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig10
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Figure 11. Transforming x to log x makes the relationship between x and y linear (right), 

compared with the non-log x (left). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Reducing the number of variables 

 

Sometimes you have too many variables and need to reduce the number because they don’t add 

new information to the model. Having too many variables in your model makes the model 

difficult to handle, and certain techniques don’t perform well when you overload them with too  

many input variables. For instance, all the techniques based on a Euclidean distance perform well 

only up to 10 variables. 

EUCLIDEAN DISTANCE 

 

Euclidean distance or “ordinary” distance is an extension to one of the first things anyone learns 

in mathematics about triangles (trigonometry): Pythagoras’s leg theorem. If you know the length 

of the two sides next to the 90° angle of a right-angled triangle you can easily derive the length 

of the remaining side (hypotenuse). The formula for this is hypotenuse 

= . The Euclidean distance between two points in a two-dimensional 

plane is calculated using a similar formula: distance = . If you 



  

 

 
 

 

Figure 12. Variable reduction allows you to reduce the number of variables while maintaining as 

much information as possible. 

want to expand this distance calculation to more dimensions, add the coordinates of the point 

within those higher dimensions to the formula. For three dimensions we get distance 

= . 

Data scientists use special methods to reduce the number of variables but retain the maximum 

amount of data. We’ll discuss several of these methods in chapter 3. Figure 12 shows how 

reducing the number of variables makes it easier to understand the key values. It also shows how 

two variables account for 50.6% of the variation within the data set (component1 = 27.8% + 

component2 = 22.8%). These variables, called “component1” and “component2,” are both 

combinations of the original variables. They’re the principal components of the underlying data 

structure. If it isn’t all that clear at this point, don’t worry, principal components analysis (PCA) 

will be explained more thoroughly in chapter 3. What you can also see is the presence of a third 

(unknown) variable that splits the group of observations into two. 
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Figure 13. Turning variables into dummies is a data transformation that breaks a variable that 

has multiple classes into multiple variables, each having only two possible values: 0 or 1. 

Turning variables into dummies 

 
Variables can be turned into dummy variables (figure 13). Dummy variables can only take two 

values: true(1) or false(0). They’re used to indicate the absence of a categorical effect that may 

explain the observation. In this case you’ll make separate columns for the classes stored in one 

variable and indicate it with 1 if the class is present and 0 otherwise. An example is turning one 

column named Weekdays into the columns Monday through Sunday. You use an indicator to 

show if the observation was on a Monday; you put 1 on Monday and 0 elsewhere. Turning 

variables into dummies is a technique that’s used in modeling and is popular with, but not 

exclusive to, economists. 
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Figure 14. Step 4: Data exploration 

In this section we introduced the third step in the data science process—cleaning, transforming, 

and integrating data—which changes your raw data into usable input for the modeling phase. 

The next step in the data science process is to get a better understanding of the content of the 

data and the relationships between the variables and observations; we explore this in the next 

section. 

8)Data exploration 
Step 4: Exploratory data analysis 

During exploratory data analysis you take a deep dive into the data (see figure 2.14). Information 

becomes much easier to grasp when shown in a picture, therefore you mainly use graphical 

techniques to gain an understanding of your data and the interactions between variables. This 

phase is about exploring data, so keeping your mind open and your eyes peeled is essential 

during the exploratory data analysis phase. The goal isn’t to cleanse the data, but it’s common 

that you’ll still discover anomalies you missed before, forcing you to take a step back and fix 

them. 
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Figure 2.15. From top to bottom, a bar chart, a line plot, and a distribution are some of the 

graphs used in exploratory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
analysis. 

The visualization techniques you use in this phase range from simple line graphs or histograms, 

as shown in figure 15, to more complex diagrams such as Sankey and network graphs. 

Sometimes it’s useful to compose a composite graph from simple graphs to get even more 

insight into the data. Other times the graphs can be animated or made interactive to make it 

easier and, let’s admit it, way more fun. 

 

 

 
Mike Bostock has interactive examples of almost any type of graph. It’s worth spending time on 

his website, though most of his examples are more useful for data presentation than data 

exploration. 
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Figure 16. Drawing multiple plots together can help you understand the structure of your data 

over multiple variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overlaying several plots is common practice. In figure 17 we combine simple graphs into a 

Pareto diagram, or 80-20 diagram. 

Figure 17. A Pareto diagram is a combination of the values and a cumulative distribution. It’s 

easy to see from this diagram that the first 50% of the countries contain slightly less than 80% of 

the total amount. If this graph represented customer buying power and we sell expensive 

products, we probably don’t need to spend our marketing budget in every country; we could 

start with the first 50%. 

 

These plots can be combined to provide even more insight, as shown in figure 16. 
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Figure 18 shows another technique: brushing and linking. With brushing and linking you 

combine and link different graphs and tables (or views) so changes in one graph are 

automatically transferred to the other graphs. 

Figure 18. Link and brush allows you to select observations in one plot and highlight the same 

observations in the other plots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 shows the average score per country for questions. Not only does this indicate a high 

correlation between the answers, but it’s easy to see that when you select several points on a 

subplot, the points will correspond to similar points on the other graphs. In this case the selected 

points on the left graph correspond to points on the middle and right graphs, although they 

correspond better in the middle and right graphs. 
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Figure 19. Example histogram: the number of people in the age-groups of 5-year intervals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Example boxplot: each user category has a distribution of the appreciation each has 

for a certain picture on a photography website. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a histogram a variable is cut into discrete categories and the number of occurrences in each 

category are summed up and shown in the graph. The boxplot, on the other hand, doesn’t show 

how many observations are present but does offer an impression of the distribution within 

categories. It can show the maximum, minimum, median, and other characterizing measures at 

the same time. 

Two other important graphs are the histogram shown in figure 19 and the boxplot shown 

in figure 20. 
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9)Data modeling  
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Figure 21. Step 5: Data modeling 

Step 5: Build the models 

 
With clean data in place and a good understanding of the content, you’re ready to build models 

with the goal of making better predictions, classifying objects, or gaining an understanding of the 

system that you’re modeling. This phase is much more focused than the exploratory analysis step 

because you know what you’re looking for and what you want the outcome to be. Figure 

21 shows the components of model building. 

The techniques we described in this phase are mainly visual, but in practice they’re certainly not 

limited to visualization techniques. Tabulation, clustering, and other modeling techniques can 

also be a part of exploratory analysis. Even building simple models can be a part of this step. 

Now that you’ve finished the data exploration phase and you’ve gained a good grasp of your data 

it’s time to move on to the next phase: building models. 
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Building a model is an iterative process. The way you build your model depends on whether you 

go with classic statistics or the somewhat more recent machine learning school, and the type of 

technique you want to use. Either way, most models consist of the following main steps: 

 

1. Selection of a modeling technique and variables to enter in the model 
 

2. Execution of the model 
 

3. Diagnosis and model comparison 

 

1. Model and variable selection 

 

You’ll need to select the variables you want to include in your model and a modeling technique. 

Your findings from the exploratory analysis should already give a fair idea of what variables will 

help you construct a good model. Many modeling techniques are available, and choosing the 

right model for a problem requires judgment on your part. You’ll need to consider model 

performance and whether your project meets all the requirements to use your model, as well as 

other factors: 

 

 Must the model be moved to a production environment and, if so, would it be easy to
 

implement? 

 How difficult is the maintenance on the model: how long will it remain relevant if left untouched?

 Does the model need to be easy to explain?
 

When the thinking is done, it’s time for action. 

 

2. Model execution 

 
Once you’ve chosen a model you’ll need to implement it in code. 

 

Luckily, most programming languages, such as Python, already have libraries such as 

StatsModels or Scikit-learn. These packages use several of the most popular techniques. Coding 

a model is a nontrivial task in most cases, so having these libraries available can speed up the 



  

 
 
 
 
 

 

Figure 22. Linear regression tries to fit a line while minimizing the distance to each point 

process. As you can see in the following code, it’s fairly easy to use linear regression (figure 22) 

with StatsModels or Scikit-learn. Doing this yourself would require much more effort even for 

the simple techniques. The following listing shows the execution of a linear prediction model. 

Listing 2.1. Executing a linear prediction model on semi-random data 

Okay, we cheated here, quite heavily so. We created predictor values that are meant to predict 

how the target variables behave. For a linear regression, a “linear relation” between each x 

(predictor) and the y (target) variable is assumed, as shown in figure 22. 
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Figure 23. Linear regression model information output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Let’s ignore most of the output we got here and focus on the most important parts: 
 

We, however, created the target variable, based on the predictor by adding a bit of randomness. It 

shouldn’t come as a surprise that this gives us a well-fitting model. 

The outputs the table in figure 23. Mind you, the exact outcome depends on 

the random variables you got. 

results.summary() 

 Model fit —For this the R-squared or adjusted R-squared is used. This measure is an 

indication of the amount of variation in the data that gets captured by the model. The 

difference between the adjusted R-squared and the R-squared is minimal here because the 

adjusted one is the normal one + a penalty for model complexity. A model gets complex 

when many variables (or features) are introduced. You don’t need a complex model if a 

simple model is available, so the adjusted R-squared punishes you for overcomplicating. 

At any rate, 0.893 is high, and it should be because we cheated. Rules of thumb exist, but 
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for models in businesses, models above 0.85 are often considered good. If you want to 

win a competition you need in the high 90s. For research however, often very low model 

fits (<0.2 even) are found. What’s more important there is the influence of the introduced 

predictor variables. 

 Predictor variables have a coefficient —For a linear model this is easy to interpret. In 

our example if you add “1” to x1, it will change y by “0.7658”. It’s easy to see how 

finding a good predictor can be your route to a Nobel Prize even though your model as a 

whole is rubbish. If, for instance, you determine that a certain gene is significant as a 

cause for cancer, this is important knowledge, even if that gene in itself doesn’t determine 

whether a person will get cancer. The example here is classification, not regression, but 

the point remains the same: detecting influences is more important in scientific studies 

than perfectly fitting models (not to mention more realistic). But when do we know a 

gene has that impact? This is called significance.

 Predictor significance —Coefficients are great, but sometimes not enough evidence 

exists to show that the influence is there. This is what the p-value is about. A long 

explanation about type 1 and type 2 mistakes is possible here but the short explanations 

would be: if the p-value is lower than 0.05, the variable is considered significant for most 

people. In truth, this is an arbitrary number. It means there’s a 5% chance the predictor 

doesn’t have any influence. Do you accept this 5% chance to be wrong? That’s up to you. 

Several people introduced the extremely significant (p<0.01) and marginally significant 

thresholds (p<0.1).

 

 
 

 

 

 

 

 

 
 

, 

Linear regression works if you want to predict a value, but what if you want to classify 

something? Then you go to classification models, the best known among them being k-nearest 

neighbors. 

As shown in figure 24, k-nearest neighbors looks at labeled points nearby an unlabeled point and 

based on this, makes a prediction of what the label should be. 
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Figure 24. K-nearest neighbor techniques look at the k-nearest point to make a prediction. 

 

prediction = knn.predict(predictors)  

 

Now we can use the prediction and compare it to the real thing using a confusion matrix.  

 
metrics.confusion_matrix(target,prediction) 

Let’s try it in Python code using the Scikit learn library, as in this next listing. 
 

Listing 2.2. Executing k-nearest neighbor classification on semi-random data 

As before, we construct random correlated data and surprise, surprise we get 85% of cases 

correctly classified. If we want to look in depth, we need to score the model. Don’t 

let knn.score() fool you; it returns the model accuracy, but by “scoring a model” we often mean 

applying it on data to make a prediction. 

copy 



  

 

 
 

Figure 25. Confusion matrix: it shows how many cases were correctly classified and incorrectly 

classified by comparing the prediction with the real values. Remark: the classes (0,1,2) were 

added in the figure for clarification. 

 

copy 

For one, the classifier had but three options; marking the difference with last 

time will round the data to its nearest integer. In this case that’s either 0, 1, 

or 2. With only 3 options, you can’t do much worse than 33% correct on 500 guesses, 

even for a real random distribution like flipping a coin. 

Second, we cheated again, correlating the response variable with the predictors. Because 

of the way we did this, we get most observations being a “1”. By guessing “1” for every 

case we’d already have a similar result. 

We compared the prediction with the real values, true, but we never predicted based on 

fresh data. The prediction was done using the same data as the data used to build the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The confusion matrix shows we have correctly predicted 17+405+5 cases, so that’s good. But is 

it really a surprise? No, for the following reasons: 

np.around() 

We get a 3-by-3 matrix as shown in figure 25. 

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig25


  

 
 

Figure 2.26. Formula for mean square error 

 

 

 
 

model. This is all fine and dandy to make yourself feel good, but it gives you no 

indication of whether your model will work when it encounters truly new data. For this 

we need a holdout sample, as will be discussed in the next section. 

3. Model diagnostics and model comparison 

 
You’ll be building multiple models from which you then choose the best one based on multiple 

criteria. Working with a holdout sample helps you pick the best-performing model. A holdout 

sample is a part of the data you leave out of the model building so it can be used to evaluate the 

model afterward. The principle here is simple: the model should work on unseen data. You use 

only a fraction of your data to estimate the model and the other part, the holdout sample, is kept 

out of the equation. The model is then unleashed on the unseen data and error measures are 

calculated to evaluate it. Multiple error measures are available, and in figure 2.26 we show the 

general idea on comparing models. The error measure used in the example is the mean square 

error. 

 

Mean square error is a simple measure: check for every prediction how far it was from the truth, 

square this error, and add up the error of every prediction. 

 

Figure 27 compares the performance of two models to predict the order size from the price. The 

first model is size = 3 * price and the second model is size = 10. To estimate the models, we use 

800 randomly chosen observations out of 1,000 (or 80%), without showing the other 20% of data 

to the model. Once the model is trained, we predict the values for the other 20% of the variables 

based on those for which we already know the true value, and calculate the model error with an 

error measure. Then we choose the model with the lowest error. In this example we chose model 

1 because it has the lowest total error. 

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig26
https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig27


  

Figure 27. A holdout sample helps you compare models and ensures that you can generalize 

results to data that the model has not yet seen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Many models make strong assumptions, such as independence of the inputs, and you have to 

verify that these assumptions are indeed met. This is called model diagnostics. 

 

This section gave a short introduction to the steps required to build a valid model. Once you have 

a working model you’re ready to go to the last step. 

 

10) Presentation and automation 

Step 6: Presenting findings and building applications on top of them 

 
After you’ve successfully analyzed the data and built a well-performing model, you’re ready to 

present your findings to the world (figure 28). This is an exciting part; all your hours of hard 

work have paid off and you can explain what you found to the stakeholders. 

https://livebook.manning.com/book/introducing-data-science/chapter-2/ch02fig28


  

Figure 28. Step 6: Presentation and automation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sometimes people get so excited about your work that you’ll need to repeat it over and over 

again because they value the predictions of your models or the insights that you produced. For 

this reason, you need to automate your models. This doesn’t always mean that you have to redo 

all of your analysis all the time. Sometimes it’s sufficient that you implement only the model 

scoring; other times you might build an application that automatically updates reports, Excel 

spreadsheets, or PowerPoint presentations. The last stage of the data science process is where 

your soft skills will be most useful, and yes, they’re extremely important. In fact, we 

recommend you find dedicated books and other information on the subject and work through 

them, because why bother doing all this tough work if nobody listens to what you have to say? 

If you’ve done this right, you now have a working model and satisfied stakeholders, so we 

can conclude this chapter here. 



  

 
 

 
Summary 

 
the data science process consists of six steps: 

Setting the research goal —Defining the what, the why, and the how of your project in a 

project charter. 

Retrieving data —Finding and getting access to data needed in your project. This data is 

either found within the company or retrieved from a third party. 

Data preparation —Checking and remediating data errors, enriching the data with data 

from other data sources, and transforming it into a suitable format for your models. 

Data exploration —Diving deeper into your data using descriptive statistics and visual 

techniques. 

Data modeling —Using machine learning and statistical techniques to achieve your 

project goal. 

Presentation and automation —Presenting your results to the stakeholders and 

industrializing your analysis process for repetitive reuse and integration with other tools. 



 

D3491 FUNDAMENTALS OF DATA SCIENCE 
 

UNIT 2 

Frequency Distributionand Data: Types, Tables, and Graphs 
 

Frequency distribution in statistics provides the information of the number of 

occurrences (frequency) of distinct values distributed within a given period of 

time or interval, in a list, table, or graphical representation. 

Types of Frequency Distribution: 

There are two types of Frequency Distribution. 

 Grouped

 Ungrouped

There are two types Data is a collection of numbers or values 

Data: Any bit of information that is expressed in a value or numerical 
number is data. Data is basically a collection of information, measurements 
or observations. 

 

For example 

 
 The marks you scored in your Math exam is data 

 
 The number of cars that pass through a bridge in a day. 

 
Raw data : 

 
Raw data is an initial collection of information. This information has not yet been 
organized. After the very first step of data collection, you will get raw data. For 
example, 

 
A group of five friends their favourite colour. The answers are Blue, Green, Blue, 
Red, and Red. This collection of information is the raw data. 

 

Discrete data :Discrete data is that which is recorded in whole numbers, like 
the number of children in a school or number of tigers in a zoo. It cannot be in 
decimals or fractions. 

 

Continuous data :Continuous data need not be in whole numbers, it can be in 
decimals. Examples are the temperature in a city for a week, your percentage of 
marks for the last exam etc. 

 

https://www.toppr.com/guides/business-mathematics-and-statistics/statistical-description-of-data/introduction-to-statistics/
https://www.toppr.com/guides/maths/can-you-see-the-pattern/pattern-in-figures-and-numbers/
https://www.toppr.com/guides/business-economics-cs/descriptive-statistics/graphic-presentation-of-data/
https://www.toppr.com/guides/physics/units-and-measurement/measurement-of-length-mass-and-time/
https://www.toppr.com/guides/physics/units-and-measurement/measurement-of-length-mass-and-time/
https://www.toppr.com/guides/economics/organisation-of-data/raw-data-classification-of-data-and-variables/
https://en.wikipedia.org/wiki/Discrete
https://en.wikipedia.org/wiki/Discrete
https://www.toppr.com/guides/maths/fractions/introduction-to-fraction/
https://www.toppr.com/guides/maths/decimals/introduction-to-decimal/
https://www.toppr.com/guides/quantitative-aptitude/percentages/


 

Example of Data Handling: 

 
Pictographs 

https://www.toppr.com/guides/maths/data-handling/pictographs/


 

 Bar Graphs

 Histogram and Pie-Charts

 Chance and Probability

 Arithmetic Mean and Median and Mode

Frequency 

 
The frequency of any value is the number of times that value appears in a data set. So from the 
above examples of colours, we can say two children like the colour blue, so its frequency is two. So 
to make meaning of the raw data, we must organize. And finding out the frequency of the data 
values is how this organisation is done. 

Frequency Distribution 

Many times it is not easy or feasible to find the frequency of data from a very large dataset. So to 
make sense of the data we make a frequency table and graphs. Let us take the example of the 
heights of ten students in cms. 

Frequency Distribution Table 

 
139, 145, 150, 145, 136, 150, 152, 144, 138, 138 

 
 
 
 
 
 
 
 
 
 
 
 

This frequency table will help us make better sense of the data given. Also when the data set is too 
big (say if we were dealing with 100 students) we use tally marks for counting. It makes the task 
more organized and easy. Below is an example of how we use tally marks. 

 
 

https://www.toppr.com/guides/maths/data-handling/bar-graphs/
https://www.toppr.com/guides/maths/data-handling/histograms-and-pie-charts/
https://www.toppr.com/guides/maths/data-handling/chance-and-probability/
https://www.toppr.com/guides/maths/data-handling/arithmetic-mean/
https://www.toppr.com/guides/maths/data-handling/median-and-mode/


 

Frequency Class Interval 

Frequency Distribution Graph 

Using the same above example we can make the following graph: 

 
 
 
 
 
 
 
 
 
 
 

Learn more about Bar Graphs and Histogram here. 
Types of Frequency Distribution 

 Grouped frequency distribution.
 Ungrouped frequency distribution.
 Cumulative frequency distribution.
 Relative frequency distribution.

 Relative cumulative frequency distribution.

Grouped Data 

At certain times to ensure that we are making correct and relevant observations from the data set, 
we may need to group the data into class intervals. This ensures that the frequency 
distribution best represents the data. example :the height of students. 

 
 
 
 
 
 
 

 

 
 
 
 

 
 
 
 

130-140 4 

140-150 3 

150-160 3 

https://www.toppr.com/guides/maths/statistics/bar-graphs-and-histogram/
https://www.toppr.com/guides/economics/organisation-of-data/frequency-distribution/
https://www.toppr.com/guides/economics/organisation-of-data/frequency-distribution/


 

From the above table, you can see that the value of 150 is put in the class interval of 150-160 and 
not 140-150. This is the convention we must follow. 

 The table gives the number of snacks ordered and the number of days as a tally. Find 
the frequency of snacks ordered. 2

 
 
 
 
 
 
 

 
Answer: From the frequency table the number of snacks ordered ranging between 

 
 2-4 is 4 days

 4 to 6 is 3 days

 6 to 8 is 9 days

 8 to 10 is 9 days

 10 to 12 is 7 days.

So the frequencies for all snacks ordered are 4, 3, 9, 9, 7 

 
 How to find frequency distribution? 2

 
Answer: We can find frequency distribution by the following steps: 

 
 First of all, calculate the range of the data set.

 Next, divide the range by the number of the group you want your data in and then round up.

 After that, use class width to create groups

 Finally, find the frequency for each group.

 Define frequency distribution in statistics? 2

 
Answer: In an overview, the frequency distribution of all distinct values in some variables and the 
number of times they occur. Meaning that it tells how frequencies are distributed overvalues in a 
frequency distribution. However, mostly we use frequency distributions to summarize categorical 
variables. 



 

 Why are frequency distributions important? 2

Answer: It has great importance in statistics. Also, a well-structured frequency distribution makes 
possible a detailed analysis of the structure of the population with respect to given characteristics. 
Therefore, the groups into which the population break down can be determined. 

 State the components of frequency distribution? 2

 
Answer: The various components of the frequency distribution are: Class interval, types of class 
interval, class boundaries, midpoint or class mark, width or size o class interval, class frequency, 

 
frequency density = class frequency/ class width, 

relative frequency = class frequency/ total frequency, etc. 

Descriptive Statistics 

 
A population is the group to be studied, and population data is a collection of all elements in the 
population. For example: 

 
 All the fish in Long Lake.
 All the lakes in the Adirondack Park.
 All the grizzly bears in Yellowstone National Park.

 
A sample is a subset of data drawn from the population of interest. For example: 

 
 100 fish randomly sampled from Long Lake.
 25 lakes randomly selected from the Adirondack Park.
 60 grizzly bears with a home range in Yellowstone National Park.

 
Populations are characterized by descriptive measures called parameters. Inferences about 
parameters are based on sample statistics. 

 
For example, 

 
The population mean (µ) is estimated by the sample mean (x̄). The population variance (σ2) is 
estimated by the sample variance (s2). 

Variables are the characteristics we are interested in. 

For example: 





The length of fish in Long Lake. 
The pH of lakes in the Adirondack Park. 



 

 The weight of grizzly bears in Yellowstone National Park.

 
Variables are divided into two major groups: Qualitative And Quantitative. 

 
1. Qualitative variables 

 
 Qualitative variables have values that are attributes or categories.

 
 Mathematical operations cannot be applied to qualitative variables.

 
 Examples of qualitative variables are gender, race, and petal color.

 
 Quantitative variables have values that are typically numeric, such as measurements.

 
 Mathematical operations can be applied to these data. Examples of quantitative variables 

are age, height, and length.

2. Quantitative variables 

o Quantitative variables can be broken down further into two more categories: 
discrete and continuous variables. 

o Discrete variables have a finite or countable number of possible values. Think of 
discrete variables as “hens.” Hens can lay 1 egg, or 2 eggs, or 13 eggs… There are a 
limited, definable number of values that the variable could take on. 

o Continuous variables have an infinite number of possible values. Think of 
continuous variables as “cows.” Cows can give 4.6713245 gallons of milk, or 
7.0918754 gallons of milk, or 13.272698 gallons of milk … There are an almost 
infinite number of values that a continuous variable could take on. 

 
 

 Examples  
 

 Is the variable qualitative or quantitative?  

Species Weight Diameter Zip Code 
 

(qualitative quantitative, quantitative, qualitative) 
 
 
 
 
 
 
 
 
 



 

Graphs 
Data can be described clearly and concisely with the aid of a well-constructed frequency 

distribution. 

GRAPHS FOR QUANTITATIVE DATA 

Histograms 

A bar-type graph for quantitative data. The common boundaries between adjacent bars 

emphasize the continuity of the data, as with continuous variables. 

A histogram in Figure shows a casual glance at this histogram confirms previous conclusions: a 

dense concentration of weights among the 150s, 160s, and 170s, with a spread in the direction 

of the heavier weights. Let’s pinpoint some of the more important features of histograms. 

■ Equal units along the horizontal axis (the X axis, or abscissa) reflect the various class intervals 

of the frequency distribution. 

■ Equal units along the vertical axis (the Y axis, or ordinate) reflect increases in frequency. (The 

units along the vertical axis do not have to be the same width as those along the horizontal axis.) 

■ The intersection of the two axes defines the origin at which both numerical scales equal 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Frequency Polygon 

A line graph for quantitative data that also emphasizes the continuity of continuous variables 

An important variation on a histogram is the frequency polygon, or line graph. Frequency 

polygons may be constructed directly from frequency distributions. However, we will follow the 

step-by-step transformation of a histogram into a frequency polygon, as described in panels A, 

B, C, and D of Figure 2.2. A. This panel shows the histogram for the weight distribution. B. Place 

dots at the midpoints of each bar top or, in the absence of bar tops, at midpoints for classes on 

the horizontal axis, and connect them with straight lines. [To find the midpoint of any class, such 



 

as 160–169, simply add the two tabled boundaries (160 + 169 = 329) and divide this sum by 2 
(329/2 = 164.5).] C. Anchor the frequency polygon to the horizontal axis. First, extend the upper 

tail to the midpoint of the first unoccupied class (250–259) on the upper flank of the histogram. 

Then extend the lower tail to the midpoint of the first unoccupied class (120–129) on the lower 

flank of the histogram. Now all of the area under the frequency polygon is enclosed completely. 

D. Finally, erase all of the histogram bars, leaving only the frequency polygon. Frequency 

polygons are particularly useful when two or more frequency distributions or relative frequency 
distributions are to be included in the same graph. 



 

 

Stem and Leaf Displays: 

A device for sorting quantitative data on the basis of leading and trailing digits. 

Still another technique for summarizing quantitative data is a stem and leaf display. Stem and 

leaf displays are ideal for summarizing distributions, such as that for weight data, without 

destroying the identities of individual observations. 

Constructing a Display 

The stemplot (also called stem and leaf plot) is another graphical display ofthe 

distribution of quantitative variable. 

To create a stemplot, the idea is to separate each data point into a stemand leaf, 

asfollows: 

• The leaf is the right-most digit. 

• The stem is everything except the right-most digit. 

• So, if the data point is 34, then 3 is the stem and 4 is the leaf. 

• If the data point is 3.41, then 3.4 is the stem and 1 is the leaf. 
 

• Note: For this to work, ALL data points should be rounded to the same 

number of decimal places. 

EXAMPLE: Best Actress Oscar Winners 
 

We will continue with the Best Actress Oscar winners example 

34 34 26 37 42 41 35 31 41 33 30 74 33 49 38 61 21 41 26 80 43 29 33 35 45 

49 39 34 26 25 35 33 

To make a stemplot: 
 

• Separate each observation into a stem and a leaf. 

• Write the stems in a vertical column with the smallest at the top, and 
draw avertical line at the right of this column. 

• Go through the data points, and write each leaf in the row to the 
right of itsstem. 

• Rearrange the leaves in an increasing order. 
 

When some of the stems hold a large number of leaves, we can split each stem into two: 

one holding the leaves 0-4, and the other holding the leaves 5-9. A 



 

 
 
 
 
 
 
 
 
 
 
 
 

statistical software package will often do the splitting for you, when appropriate.Note 

that when rotated 90 degrees counter-clockwise, the stemplot visuallyresembles a 

histogram: 

 
 
 
 
 
 
 
 
 

The stemplot has additional unique features: 

 preserves the original data. 

 It sorts the data (which will become very useful in the next section). 



 

Typical Shapes 

 

Whether expressed as a histogram, a frequency polygon, or a stem and leaf display, an important 
characteristic of a frequency distribution is its shape. Figure 2.3 shows some of the more typical 
shapes for smoothed frequency polygons (which ignore the inevitable irregularities of real data). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Normal 

Any distribution that approximates the normal shape in panel A of Figure 2.3 can be analyzed, as 

we will see in Chapter 5, with the aid of the well-documented normal curve. The familiar bell- 

shaped silhouette of the normal curve can be superimposed on many frequency distributions, 

including those for uninterrupted gestation periods of human fetuses, scores on standardized 

tests, and even the popping times of individual kernels in a batch of popcorn. 

Bimodal 

Any distribution that approximates the bimodal shape in panel B of Figure 2.3 might, as 
suggested previously, reflect the coexistence of two different types of observations in the same 

distribution. For instance, the distribution of the ages of residents in a neighborhood consisting 

largely of either new parents or their infants has a bimodal shape. 

Positively Skewed The two remaining shapes in Figure 2.3 are lopsided. A lopsided distribution 

caused by a few extreme observations in the positive direction (to the right of the majority of 

observations), as in panel C of Figure 2.3, is a positively skewed distribution. 



 

The distribution of incomes among U.S. families has a pronounced positive skew, with most 
family incomes under $200,000 and relatively few family incomes spanning a wide range of 

values above $200,000. The distribution of weights in Figure 2.1 also is positively skewed. 

Negatively Skewed A lopsided distribution caused by a few extreme observations in the negative 

direction (to the left of the majority of observations), as in panel D of Figure 2.3, is a negatively 

skewed distribution. The distribution of ages at retirement among U.S. job holders has a 

pronounced negative skew, with most retirement ages at 60 years or older and relatively few 

retirement ages spanning the wide range of ages younger than 60. 

A GRAPH FOR QUALITATIVE (NOMINAL) DATA: 

The distribution in Table 2.7, based on replies to the question “Do you have a Facebook profile?” 

appears as a bar graph in Figure 2.4. A glance at this graph confirms that Yes replies occur 

approximately twice as often as No replies. As with histograms, equal segments along the 

horizontal axis are allocated to the different words or classes that appear in the frequency 

distribution for qualitative data. Likewise, equal segments along the vertical axis reflect 

increases in frequency. The body of the bar graph consists of a series of bars whose heights 

reflect the frequencies for the various words or classes. A person’s answer to the question “Do 

you have a Facebook profile?” is either Yes or No, not some impossible intermediate value, such 

as 40 percent Yes and 60 percent No. Gaps are placed between adjacent bars of bar graphs to 

emphasize the discontinuous nature of qualitative data. A bar graph also can be used with 

quantitative data to emphasize the discontinuous nature of a discrete variable, such as the 

number of children in a family. 



 

Misleading Graphs: 

Graphs can be constructed in an unscrupulous manner to support a particular point of view. 

Indeed, this type of statistical fraud gives credibility to popular sayings, including “Numbers 

don’t lie, but statisticians do” and “There are three kinds of lies—lies, damned lies, and 

statistics.” For example, to imply that comparatively many students responded Yes to the 

Facebook profile question, an unscrupulous person might resort to the various tricks shown in 
Figure 2.5: 

■ The width of the Yes bar is more than three times that of the No bar, thus violating the custom 
that bars be equal in width. 

■ The lower end of the frequency scale is omitted, thus violating the custom that the entire scale 

be reproduced, beginning with zero. (Otherwise, a broken scale should be highlighted by 

crossover lines, as in Figures 2.1 and 2.2.) 

■ The height of the vertical axis is several times the width of the horizontal axis, thus violating 

the custom, heretofore unmentioned, that the vertical axis be approximately as tall as the 

horizontal axis is wide. Beware of graphs in which, because the vertical axis is many times larger 

than the horizontal axis (as in Figure 2.5), frequency differences are exaggerated, or in which, 

because the vertical axis is many times smaller than the horizontal axis, frequency differences 

are suppressed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
AVERAGES 

A center of a data set is a way of describing a location. We can measure a center of a 

data in 3 different ways: the mean (average), the median and the mode. 

The two main numerical measures for the center of a distribution are the mean and the 

median. Each one of these measures is based on a completely different idea of 

describing the center of a distribution. Let us first present each one of the measures, 

and then compare their properties. 

MEAN 



 

The mean is the average of a set of observations (i.e., the sum of the observations 

divided by the number of observations). 

The mean is the average of a set of observations. If the n observations are written as their 
mean can be written mathematically as: their mean is: 

 
 

 
We read the symbol as “x-bar.” The bar notation is commonly used to 

represent the samplemean, i.e. the mean of the sample. 

 
 
 
 
 

EXAMPLE: Best Actress Oscar Winners 

We will continue with the Best Actress Oscar winners example . 

34 34 26 37 42 41 35 31 41 33 30 74 33 49 38 61 21 41 26 80 43 29 33 35 45 

49 39 34 26 25 35 33 

The mean age of the 32 actresses is: 

 
 
 

We add all of the ages to get 1233 and divide by the number of ages which was 32 to 

get 38.5. We denote this result as x-bar and called the sample mean. 

EXAMPLE: World Cup Soccer 
 

Often we have large sets of data and use a frequency table to display the data more 

efficiently. Data were collected from the last three World Cup soccer tournaments. A 

total of 192 games were played. The table below lists the number of goals scored per 

game (not including any goals scored in shootouts). 

Total # 

Goals/Game 

Frequency 

0 17 

1 45 

2 51 



 

3 37 

4 25 

5 11 

6 3 

7 2 

8 1 

 

To find the mean number of goals scored per game, we would need to find the sum of 

all 192 numbers, and then divide that sum by 192. 

Rather than add 192 numbers, we use the fact that the same numbers appear many 

times. For example, the number 0 appears 17 times, the number 1 appears 45 times, 

the number2 appears 51 times, etc. 

If we add up 17 zeros, we get 0. If we add up 45 ones, we get 45. If we add up 51 twos, 

we get 102. Repeated addition is multiplication. 

Thus, the sum of the 192 numbers 
 

= 0(17) + 1(45) + 2(51) + 3(37) + 4(25) + 5(11) + 6(3) + 7(2) + 8(1) = 453. 
 

The sample mean is then 453 / 192 = 2.359. 

 

Note that, in this example, the values of 1, 2, and 3 are the most common andour 

averagefalls in this range representing the bulk of the data. 

 
MEDIAN 

 
Define and calculate the sample median of a quantitative variable. 

The median M is the midpoint of the distribution. It is  the number suchthat half 

of the observations fall above, and half fall below. 

To find the median: 

Order the data from smallest to largest. 

Consider whether n, the number of observations, is even or odd. 

If n is odd, the median M is the center observation in the ordered list. Thisobservation is the 

one “sitting” in the (n + 1) / 2 spot in the ordered list. 

If n is even, the median M is the mean of the two center observations in the ordered 



 

list. These two observations are the ones “sitting” in the (n / 2) and(n / 2) + 1 spots 

in the ordered list. 

EXAMPLE: Median (1) 

For a simple visualization of the location of the median, consider the followingtwo 

simple cases of n = 7 and n = 8 ordered observations, with each observation 

represented by asolid circle: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comments: 

In the images above, the dots are equally spaced, this need not indicate the data values 

are actually equally spaced as we are only interested in listing them in order. In fact, in 

the above pictures, two subsequent dots could have exactly the same value. It is clear 

that the value of the median will be in the same position regardless of the distance 

between data values. 

EXAMPLE: Median (2) 

To find the median age of the Best Actress Oscar winners, we first need to order the data. 

It would be useful, then, to use the stemplot, a diagram in which the dataare 

already ordered. 

Here n = 32 (an even number), so the median M, will be the mean of thetwo 

center observations. 



 

These are located at the (n / 2) = 32 / 2 = 16th and(n / 2) + 

1 = (32 / 2) + 1 = 17th 

Counting from the top, we find that: the 16th ranked observation is 35the 17thranked 

observation also happens to be 35. Therefore, the median M = (35 + 35) / 2 = 35 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparing the Mean and the Median 
 

The mean and the median, the most common measures of center, each describe the 

centerof a distribution of values in a different way. 

The mean describes the center as an average value, in which the actual values of the 

data points play an important role. 



 

The median, on the other hand, locates the middle value as the center, and 

theorder of the data is the key. 

To get a deeper understanding of the differences between these twomeasures of 

center,consider the following example. Here are two datasets: 

Data set A → 64 65 66 68 70 71 73 

Data set B → 64 65 66 68 70 71 730 

For dataset A, the mean is 68.1, and the median is 68. 
 

Looking at dataset B, notice that all of the observations except the last one are 

close together. The observation 730 is very large, and is certainly an outlier. In this case, 

the median is still 68, but the mean will be influenced by the high outlier, and shifted 

up to 162. 

The message that we should take from this example is: 

The mean is very sensitive to outliers (because it factors in their magnitude), while 

the median is resistant (or robust) to outliers. 

 

MODE: 3rd Measure 

The mode of a data set is the number that occurs most frequently in the set. 

• If no value appears more than once in the data set, the data set has no mode. 

• If a there are two values that appear in the data set an equal number of 

times, theyboth will be modes etc. 

 
For symmetric distributions with no outliers: the mean is approximately equaltothe 

median. 



 

For skewed right distributions and/or datasets with high outliers: the mean is 

 
 
 
 
 
 
 
 
 
 
 

 
greater than the median. 

 
For skewed left distributions and/or datasets with low outliers: the mean is less than 

the median. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
When to use which measures? 

 
• Use the sample mean as a measure of center for symmetric distributions with 

no outliers. Otherwise, the median will be a more appropriate measure of the 

center of our data. 

Let’s Summarize 
 

 The two main numerical measures for the center of a distribution are the 
 



 

mean and the median. The mean is the average value, while the median is the middle 

value. 

 The mean is very sensitive to outliers (as it factors in their magnitude), 

while the median is resistant to outliers. 

 The mean is an appropriate measure of center for symmetric distributions 

with no outliers. In all other cases, the median is often a better measure of the 

center of the distribution. 

Describing Variability 
 

Intuitive Approach 

 In Figure 4.1, each of the three frequency distributions consists of seven scores with the 

same mean (10) but with different variabilities. (Ignore the numbers in boxes; their 

significance will be explained later.) Before reading on, rank the three distributions from 

least to most variable. Your intuition was correct if you concluded that distribution A has 

the least variability, distribution B has intermediate variability, and distribution C has the 

most variability. If this conclusion is not obvious, look at each of the three distributions, one 

at a time, and note any differences among the values of individual scores. For distribution 

A with the least (zero) variability, all seven scores have the same value (10). For 

distribution B with intermediate variability, the values of scores vary slightly (one 9 and 

one 11), and for distribution C with most variability, they vary even more (one 7, two 9s, 

two 11s, and one 13). Importance of Variability Variability assumes a key role in an analysis 

of research results. For example, a researcher might ask: Does fitness training improve, on 

average, the scores of depressed patients on a mental-wellness test? To answer this 

question, depressed patients are randomly assigned to two groups, fitness training is given 

to one group, and wellness scores are obtained for both groups. Let’s assume that the mean 

wellness score is larger for the group with fitness training. Is the observed mean difference 

between the two groups real or merely transitory? This decision depends not only on the 

size of the mean difference between the two groups but also on the inevitable variabilities 

of individual scores within each group. To illustrate the importance of variability, Figure 4.2 

shows the outcomes for two fictitious experiments, each with the same mean difference of 

2, but with the two groups in experiment B having less variability than the two groups in 

experiment C. Notice that groups B and C in Figure 4.2 are the same as their counterparts 

in Figure 4.1. Although the new group B* retains exactly the same (intermediate) variability 



 

as group B, each of its seven scores and its mean have been shifted 2 units to the right. 

Likewise, although the new group C* retains exactly the same (most) variability as group 

C, each of its seven scores and its mean have been shifted 2 units to the right. Consequently, 

the crucial mean difference of 2 (from 12 − 10 = 2) is the same for both experiments. Before 

reading on, decide which mean difference of 2 in Figure 4.2 is more apparent. The mean 

difference for experiment B should seem more apparent because of the smaller variabilities 

within both groups B and B*. Just as it’s easier to hear a phone message when static is  

reduced, it’s easier to see a difference between group means when variabilities within 

groups are reduced. 



 

Range 

 

A range measures the spread of a data inside the limits of a data set, it is calculated as 

a difference between the highest and lowest values in the data set. The larger the range, 

the greater the spread of the data.The range covered by the data is the most intuitive 

measure of variability. The range is exactly the distance between the smallest data 

point (min) and the largest one (Max). 

Range = Max – min 
 

Note: When we first looked at the histogram, and tried to get a first feel for thespread 

of the data, we were actually approximating the range, rather than calculating the exact 

range. 

EXAMPLE: Best Actress Oscar Winners 
 

Here we have the Best Actress Oscar winners’ data 

34 34 26 37 42 41 35 31 41 33 30 74 33 49 38 61 21 41 26 80 43 29 33 35 45 

49 39 34 26 25 35 33 

In this example: 
 

min = 21 (Marlee Matlin for Children of a Lesser God, 1986) Max = 80 

(Jessica Tandy for Driving Miss Daisy, 1989) 

 
The range covered by all the data is 80 – 21 = 59 years. 
Variance: 

The mean of all squared deviation scores. 

Although both the range and its most important spinoff, the interquartile range 

(discussed in Section 4.7), serve as valid measures of variability, neither is among the 

statistician’s preferred measures of variability. Those roles are reserved for the 

variance and particularly for its square root, the standard deviation, because these 

measures serve as key components for other important statistical measures. 

Accordingly, the variance and standard deviation occupy the same exalted position 

among measures of variability as does the mean among measures of central tendency. 

Following the computational procedures described in later sections of this chapter, we 

could calculate the value of the variance for each of the three distributions in Figure 

4.1. Its value equals 0.00 for the least variable distribution, A, 0.29 for the moderately 



 

variable distribution, B, and 3.14 for the most variable distribution, C, in agreement 

with our intuitive judgments about the relative variability of these three distributions. 

Reconstructing the Variance To understand the variance better, let’s reconstruct it step 

by step. Although a measure of variability, the variance also qualifies as a type of mean, 

that is, as the balance point for some distribution. To qualify as a type of mean, the 

values of all scores must be added and then divided by the total number of scores. In 

the case of the variance, each original score is re-expressed as a distance or deviation 

from the mean by subtracting the mean. For each of the three distributions in 

Figure 4.1, the face values of the seven original scores (shown as numbers along the X 

axis) have been re-expressed as deviation scores from their mean of 10 (shown as 

numbers in the boxes). For example, in distribution C, one score coincides with the 

mean of 10, four scores (two 9s and two 11s) deviate 1 unit from the mean, and two 

scores (one 7 and one 13) deviate 3 units from the mean, yielding a set of seven 

deviation scores: one 0, two –1s, two 1s, one –3, and one 3. (Deviation scores above the 

mean are assigned positive signs; those below the mean are assigned negative signs.) 

Mean of the Deviations Not a Useful Measure No useful measure of variability can be 

produced by calculating the mean of these seven deviations, since, as you will recall 

from Chapter 3, the sum of all deviations from their mean always equals zero. In effect, 

the sum of all negative deviations always counterbalances the sum of all positive 

deviations, regardless of the amount of variability in the group. 

 
The standard deviation is to quantify the spread of a distribution by measuring how 

far the observations are from their mean. The standard deviation gives the average (or 

typicaldistance) between a data point and the mean. 

Standard deviation is the measure of the overall spread (variability) of a data set 

valuesfrom the mean. The more spread out a data set is, the greater are thedistances 

from themean and the standard deviation. 

There are many notations for the standard deviation: SD, s, Sd, StDev. Here, 

we’ll use SDas an abbreviation for standard deviation, and use s as the symbol.Formula 

The sample standard deviation formula is: 

 



 

 

 
 

Calculation 

In order to get a better understanding of the standard deviation, it would beuseful 

tosee an example of how it is calculated. 

EXAMPLE: Video Store Customers 
 

The following are the number of customers who entered a video store in8 

consecutivehours: 7, 9, 5, 13, 3, 11, 15, 9 

To find the standard deviation of the number of hourly customers: 

1. Find the mean, x-bar, of your data: 

(7 + 9 + 5 + 13 + 3 + 11 + 15 + 9)/8 = 9 

2. Find the deviations from the mean: 

• The differences between each observation and the mean here are 

(7 – 9), (9 – 9), (5 – 9), (13 – 9), (3 – 9), (11 – 9), (15 – 9), (9 – 9) 
-2, 0, -4, 4, -6, 2, 6, 0 

 
• Since the standard deviation attempts to measure the average (typical) 

distance between the data points and their mean, it would make sense to 
average the deviation we obtained. 

• Note, however, that the sum of the deviations is zero. 

3. To solve the previous problem, in our calculation, we square each of the 

deviations. 

(-2)2, (0)2, (-4)2, (4)2, (-6)2, (2)2, (6)2, (0)2 

4, 0, 16, 16, 36, 4, 36, 0 
 

4. Sum the squared deviations and divide by n – 1: 

(4 + 0 + 16 + 16 + 36 + 4 + 36 + 0)/(8 – 1) 

(112)/(7) = 16 
 

• This value, the sum of the squared deviations divided by n – 1, is called the 
 

variance. However, the variance is not used as a measure of spread directly as 



 

the units are the square of the units of the original data. 
 

5. The standard deviation of the data is the square root of the variance calculated 

in step. 

In this case, we have the square root of 16 which is 4. We will use the lower case 

letter s represent the standard deviation. s = 4 

• We take the square root to obtain a measure which is in the original units 

of the data. The units of the variance of 16 are in “squared customers” which is 

difficult to interpret. 

• The units of the standard deviation are in “customers” which makes this 

measure ofvariation more useful in practice than the variance. 

9. The interpretation of the standard deviation is that on average, the actual 

number of customers who enter the store each hour is 4 away from 9. 

 The standard deviation is the square root of the variance (both population and sample).

 While the sample variance is the positive, unbiased estimator for the population 

variance, the units for the variance are squared.

 The standard deviation is a common method for numerically describing the distribution 

of a variable. The population standard deviation is σ (sigma) and sample standard 

deviation is s.

Population standard deviation Sample standard deviation 
 
 
 

 Example 7  
 

 

 

DEGREES OF FREEDOM ( d f) 

Degrees of freedom (df) refers to the number of values that are free to vary, given one 

or more mathematical restrictions, in a sample being used to estimate a population 

characteristic. 

Compute the standard deviation of the sample data: 3, 5, 7 with a sample mean of 5. 



 

The number of values free to vary, given one or more mathematical restrictions. 

degrees of freedom, that is, df = n – 1. 

Inter-Quartile Range (IQR) 
 

The Inter-Quartile Range or IQR measures the variability of a 

distribution by giving us the range covered by the MIDDLE 50% of the data.To find 

the interquartile range (IQR), first find the median (middle value) of the lower and 

upper half of the data. These values are quartile 1 (Q1) and quartile 3 (Q3). The IQR is 

the difference between Q3 and Q1. 

IQR = Q3 – Q1 
 

Q3 = 3rd Quartile = 75th PercentileQ1 = 1st 

Quartile = 25th Percentile 

The following picture illustrates this idea: (Think about the horizontal line as the data 

ranging from the min to the Max). IMPORTANT NOTE: The “lines” in the following 

illustrations are not to scale. The equal distances indicate equal amounts of data NOT 

equal distance between the numeric values. 

 
 
 
 
 
 
 
 
 
 

 
To calculate the IQR: 

 
1. Arrange the data in increasing order, and find the median M. Recall that 

the median divides the data, so that 50% of the data points are below the 

median, and 50% of the data points are above the median. 



 

 

 
 

2. Find the median of the lower 50% of the data. This is called the first 

quartile of the distribution, and the point is denoted by Q1. Note from the 

picture that Q1 divides the lower 50% of the data into two halves, containing 

 

25% of the data points in eachhalf. Q1 is called the first quartile, since one 

quarter of the data points fall below it. 

3. Repeat this again for the top 50% of the data. Find the median of the 

top 50% of the data. This point is called the third quartile of the distribution, 

and is denoted by Q3.Note from the picture that Q3 divides the top 50% of the 

data into two halves, with 25%of the data points in each.Q3 is called the third 

quartile,since three quarters of the data points fall below it. 



 

4. The middle 50% of the data falls between Q1 and Q3, and therefore: 

IQR = Q3 – Q1. 

 
 
 
 
 
 
 
 
 
 

Comments: 

1. The last picture shows that Q1, M, and Q3 divide the data into four 

quarters with 25%of the data points in each, where the median is essentially 

the second quartile. The use of IQR = Q3 – Q1 as a measure of spread is therefore 

particularly appropriate when the median M is used as a measure ofcenter. 

2. We can define a bit more precisely what is considered the bottom or top 

50% of the data. The bottom (top) 50% of the data is all the observations whose 

position in the ordered list is to the left (right) of the location of the overall  

median M. The following picture will visually illustrate this for the simple cases 

of n = 7 and n = 8. 



 

Note that when n is odd (as in n = 7 above), the median is not included in either 

the bottom or top half of the data; When n is even (as in n = 8 above), the data are 

naturally divided into two halves. 

EXAMPLE: Best Actress Oscar Winners 
 

To find the IQR of the Best Actress Oscar winners’ distribution, it will be 

convenient touse the stemplot. 

 
 
 
 
 
 
 
 

 
Q1 is the median of the bottom half of the data. Since there are 16 observations in 

that half, Q1 is the mean of the 8th and 9th ranked observations in that half: 

Q1 = (31 + 33) / 2 = 32 

Similarly, Q3 is the median of the top half of the data, and since there are 16 

observations in that half, Q3 is the mean of the 8th and 9th ranked observations 

in that half: 

Q3 = (41 + 42) / 2 = 41.5 

IQR = 41.5 – 32 = 9.5 

Note that in this example, the range covered by all the ages is 59 years, while the 

range covered by the middle 50% of the ages is only 9.5 years. While the whole 

dataset is spread over a range of 59 years, the middle 50% of the datais packed 

into only 9.5 years. 



 

The Normal Distribution 

 
Many continuous random variables have a bell-shaped or somewhat symmetric 

distribution. 

This is a normal distribution. In other words, the probability distribution of its relative 

frequency histogram follows a normal curve. 

The curve is bell-shaped, symmetric about the mean, and defined by µ and σ (the mean and 

standard deviation). 

 
 
 
 
 
 
 
 
 

 
Figure 9. A normal distribution. 

There are normal curves for every combination of µ and σ. 

 The mean (µ) shifts the curve to the left or right.

 The standard deviation (σ) alters the spread of the curve.

 The first pair of curves have different means but the same standard deviation.

 The second pair of curves share the same mean (µ) but have different standard 

deviations.

 The pink curve has a smaller standard deviation. It is narrower and taller, and the 

probability is spread over a smaller range of values.



 

 The blue curve has a larger standard deviation. The curve is flatter and the tails are 
thicker. The probability is spread over a larger range of values.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. A comparison of normal curves. 

 
Properties of the normal curve: 

 
 The mean is the center of this distribution and the highest point.
 The curve is symmetric about the mean. (The area to the left of the mean equals the area to 

the right of the mean.)
 The total area under the curve is equal to one.
 As x increases and decreases, the curve goes to zero but never touches.



 

 
 

 The PDF of a normal curve is .
 A normal curve can be used to estimate probabilities.
 A normal curve can be used to estimate proportions of a population that have certain x- 

values.

 

The Standard Normal Distribution 

 
There are millions of possible combinations of means and standard deviations for 
continuous random variables. 

 
Finding probabilities associated with these variables would require us to integrate the PDF 
over the range of values we are interested in. 

 
To avoid this, we can rely on the standard normal distribution. T 

 
he standard normal distribution is a special normal distribution with a µ = 0 and σ = 1. We 
can use the Z-score to standardize any normal random variable, converting the x-values to 
Z-scores, thus allowing us to use probabilities from the standard normal table. So how do 
we find area under the curve associated with a Z-score? 

 

Standard Normal Table 

 
 The standard normal table gives probabilities associated with specific Z-scores.
 The table we use is cumulative from the left.
 The negative side is for all Z-scores less than zero (all values less than the mean).
 The positive side is for all Z-scores greater than zero (all values greater than the mean).
 Not all standard normal tables work the same way.

 

 Example 10  
 

 What is the area associated with the Z-score 1.62?  



 

 
 

Reading the Standard Normal Table 

 
 Read down the Z-column to get the first part of the Z-score (1.6).
 Read across the top row to get the second decimal place in the Z-score (0.02).
 The intersection of this row and column gives the area under the curve to the left of the Z- 

score.

 

Finding Z-scores for a Given Area 

 
 What if we have an area and we want to find the Z-score associated with that area?
 Instead of Z-score → area, we want area → Z-score.
 We can use the standard normal table to find the area in the body of values and read 

backwards to find the associated Z-score.
 Using the table, search the probabilities to find an area that is closest to the probability you 

are interested in.
 

 Example 11  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. The standard normal table and associated area for z = 1.62. 

To find a Z-score for which the area to the right is 5%: 

Since the table is cumulative from the left, you must use the complement of 5%. 



 

 
 

 

 Example 12  
 

 To find Z-scores that limit the middle 95%:  
 

1.000 – 0.05 = 0.9500 

 
 
 
 
 
 
 
 
 
 
 

Figure 12. The upper 5% of 

the area under a normal curve. 

 Find the Z-score for the area of 0.9500. 
 Look at the probabilities and find a value as close to 0.9500 as possible. 

 
 
 
 
 
 
 

 
Figure 

13. The standard normal table. 

The Z-score for the 95th percentile is 1.64.Area in between Two Z-scores 

 The middle 95% has 2.5% on the right and 2.5% on the left. 
 Use the symmetry of the curve. 



 

 
 

 

 
Common Z-scores 

 
There are many commonly used Z-scores: 

 
 Z.05 = 1.645 and the area between -1.645 and 1.645 is 90%

 Z.025 = 1.96 and the area between -1.96 and 1.96 is 95%

 Z.005 = 2.575 and the area between -2.575 and 2.575 is 99%

 

Applications of the Normal Distribution 

 
Typically, our normally distributed data do not have μ = 0 and σ = 1, but we can relate any 
normal distribution to the standard normal distributions using the Z-score. We can 
transform values of x to values of z. 

 
 
 

 
For example, if a normally distributed random variable has a μ = 6 and σ = 2, then a value of 
x = 7 corresponds to a Z-score of 0.5. 

 
 
 
 
 
 
 
 
 

 
Figure 14. The middle 

95% of the area under a normal curve. 

 Look at your standard normal table. Since the table is cumulative from the left, it is easier 
to find the area to the left first. 

 Find the area of 0.025 on the negative side of the table. 
 The Z-score for the area to the left is -1.96. 
 Since the curve is symmetric, the Z-score for the area to the right is 1.96. 



 

 

 
 

This tells you that 7 is one-half a standard deviation above its mean. We can use this 
relationship to find probabilities for any normal random variable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 15. A normal and standard normal curve. 

 
To find the area for values of X, a normal random variable, draw a picture of the area of 
interest, convert the x-values to Z-scores using the Z-score and then use the standard 
normal table to find areas to the left, to the right, or in between. 

 Example 13  

Adult deer population weights are normally distributed with µ = 110 lb. and σ = 29.7 lb. As 
a biologist you determine that a weight less than 82 lb. is unhealthy and you want to know 
what proportion of your population is unhealthy. 

P(x<82) 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. The area 

under a normal curve for P(x<82). 
 
 

 
Convert 82 to a Z-score 

The x value of 82 is 0.94 standard deviations below the mean. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 17. Area under 

a standard normal curve for P(z<-0.94). 

Go to the standard normal table (negative side) and find the area associated with a Z-score 
of -0.94. 

This is an “area to the left” problem so you can read directly from the table to get the 
probability. 

P(x<82) = 0.1736 

Approximately 17.36% of the population of adult deer is underweight, OR one deer chosen 
at random will have a 17.36% chance of weighing less than 82 lb. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Assessing Normality 

 
 If the distribution is unknown and the sample size is not greater than 30 (Central 

Limit Theorem), we have to assess the assumption of normality. 

 
 Our primary method is the normal probability plot. This plot graphs the observed 

data, ranked in ascending order, against the “expected” Z-score of that rank. 

 Example 14  
 

 
 
 
 
 
 
 
 
 
 
 
 

 If the sample data were taken from a normally distributed random variable, then the 
plot would be approximately linear.

 Examine the following probability plot.

 The center line is the relationship we would expect to see if the data were drawn 
from a perfectly normal distribution.

Statistics from the Midwest Regional Climate Center indicate that Jones City, which has a 
large wildlife refuge, gets an average of 36.7 in. of rain each year with a standard deviation 
of 5.1 in. The amount of rain is normally distributed. During what percent of the years does 
Jones City get more than 40 in. of rain? 

P(x > 40) 

 
 
 
 
 
 
 
 
 
 
 

Figure 18. Area under a normal 

curve for P(x>40). 

 

 
P(x>40) = (1-0.7422) = 0.2578 

For approximately 25.78% of the years, Jones City will get more than 40 in. of rain. 



 

 Notice how the observed data (red dots) loosely follow this linear relationship. 
Minitab also computes an Anderson-Darling test to assess normality.

 The null hypothesis for this test is that the sample data have been drawn from a 
normally distributed population. A p-value greater than 0.05 supports the 
assumption of normality.

 

Figure 20. Histogram and normal probability plot for skewed right data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 19. A normal probability plot generated using Minitab 16. 

 
Compare the histogram and the normal probability plot in this next example. The 
histogram indicates a skewed right distribution. 



 

The observed data do not follow a linear pattern and the p-value for the A-D test is less 
than 0.005 indicating a non-normal population distribution. 

Normality cannot be assumed. You must always verify this assumption. Remember, the 
probabilities we are finding come from the standard NORMAL table. If our data are NOT 
normally distributed, then these probabilities DO NOT APPLY. 

 
 
 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

UNIT III INFERENTIAL STATISTICS 
Populations – samples – random sampling – Sampling distribution- standard error of the 
mean - Hypothesis testing – z-test – z-test procedure –decision rule – calculations – decisions 
– interpretations - one-tailed and two-tailed tests – Estimation – point estimate – confidence 
interval – level of confidence – effect of sample size. 

 
3 . 1 P O P U L AT I O N S 

Any complete set of observations (or potential observations) may be characterized as a 
Population. Accurate descriptions of populations specify the nature of the observations to be 
taken. For example, a population might be described as “attitudes toward abortion of 
currently enrolled students at Bucknell University” or as “SAT critical reading scores of 
currently enrolled students at Rutgers University”. 

1. R e a l Po p ul ations 
Pollsters, such as the Gallup Organization, deal with real populations. A real population 

is one in which all potential observations are accessible at the time of sampling. Examples of 
real populations, the ages of all visitors to Disneyland on a given day, the ethnic backgrounds 
of all current employees of the U.S. Postal Department, and presidential preferences of all  
currently registered voters in the United States. Incidentally, federal law requires that a 
complete survey be taken every 10 years of the real population of all U.S. house- holds at 
considerable expense, involving thousands of data collectors as a means of revising election 
districts for the House of Representatives. (An estimated undercount of millions of people, 
particularly minorities, in both the 2000 and 2010 censuses has revived a suggestion, long 
endorsed by statisticians, that the entire U.S. population could be estimated more accurately if 
a highly trained group of data collectors focused only on a random sample of households.). 

2. H y po the ti cal  P o pulati o ns  
A hypothetical population is one in which all potential observations are not accessible 

at the time of sampling. In most experiments, subjects are selected from very small, 
uninspiring real populations: the lab rats housed in the local animal colony or student 
volunteers from general psychology classes. Experimental subjects often are viewed, 
nevertheless, as a sample from a much larger hypothetical population, loosely described as 
“the scores of all similar animal subjects (or student volunteers) who could conceivably 
undergo the present experiment.” According to the rules of inferential statistics, 
generalizations should be made only to real populations that, in fact, have been sampled. 
Generalizations to hypothetical populations should be viewed, therefore, as provisional 
conclusions based on the wisdom of the researcher rather than on any logical or statistical  
necessity. In effect, it’s an open question often answered only by additional 
experimentation whether or not a given experimental finding merits the generality 
assigned to it by the researcher. 

3 . 1.2 S A M P L E S 

Any subset of observations from a population may be characterized as a sample. In 
typical applications of inferential statistics, the sample size is small relative to the 
population size. For example, less than 1 percent of all U.S. worksites are included in the 
Bureau of Labor Statistics’ monthly survey to estimate the rate of unemployment. And 



 

although, only 1475 likely voters had been sampled in the final poll for the 2012 
presidential election by the NBC News/Wall Street Journal, it correctly predicted that 
Obama would be the slim winner of the popular vote. 

 
O p t i m a l S a m p l e S i z e 

There is no simple rule of thumb for determining the best or optimal sample size for any 
particular situation. Often sample sizes are in the hundreds or even the thousands for 
surveys, but they are less than 100 for most experiments. Optimal sample size depends on 
the answers to a number of questions, including “What is the estimated variability among 
observations?” and “What is an acceptable amount of error in our conclusion?” Once these  
types of questions have been answered that is the result, the specific procedures can be 
followed to determine the optimal sample size for any situation. 

3.1.3 R A N D O M S A M P L I N G 

The valid use of techniques from inferential statistics requires that samples be 
random. 

Random sampling occurs if, at each stage of sampling, the selection process guarantees that 
all potential observations in the population have an equal chance of being included in the 
sample. 

It’s important to note that randomness describes the selection process that is, the 
conditions under which the sample is taken and not the particular pattern of observations in 
the sample. Having established that sampling is random, you still can’t predict anything 
about the unique pattern of observations in that sample. The observations in the sample 
should be representative of those in the population, but there is no guarantee that they 
actually will be. 

C a s u a l or H a p h a z a r d , No t R a n d o m 

A casual or haphazard sample doesn’t qualify as a random sample. Not every student at UC  
San Diego has an equal chance of being sampled if, for instance, a pollster casually selects 
only students who enter the student union. Obviously excluded from this sample are all 
those students (few, we hope) who never enter the student union. Even the final selection of 
students from among those who do enter the student union might reflect the pollster’s 
various biases, such as an unconscious preference for attractive students who are walking 
alone. 

 

3.2 Sampling distribution 

WH AT I S A S A M P L I N G D I S T R I B U T I O N ? 

 
Random samples rarely represent the underlying population exactly. Even a mean math 

score of 533 could originate, just by chance, from a population of freshmen whose mean 
equals the national average of 500. Accordingly, generalizations from a single sample to a 
population are much more tentative. Indeed, generalizations are based not merely on the 
single sample mean of 533 but also on its distribution a distribution of sample means for all 
possible random samples. Representing the statistician’s model of random outcomes, 



 

The sampling distribution of the mean refers to the probability distribution of means for all 
possible random samples of a given size from some population. 

 
In effect, this distribution describes the variability among sample means that could occur just 
by chance and thereby serves as a frame of reference for generalizing from a single sample 
mean to a population mean. 

The sampling distribution of the mean allows us to determine whether, given the 
variability among all possible sample means, the one observed sample mean can be viewed as 
a common outcome or as a rare outcome (from a distribution centered, in this case, about a 
value of 500). If the sample mean of 533 qualifies as a common outcome in this sampling 
distribution, then the difference between 533 and 500 isn’t large enough, relative to the 
variability of all possible sample means, to signify that anything special is happening in the 
underlying population. Therefore, we can conclude that the mean math score for the entire 
freshman class could be the same as the national average of 500. On the other hand, if the 
sample mean of 533 qualifies as a rare outcome in this sampling distribution, then the 
difference between 533 and 500 is large enough, relative to the variability of all possible 
sample means, to signify that something special probably is happening in the underlying 
population. Therefore, we can conclude that the mean math score for the entire freshman 
class probably exceeds the national average of 500. 

 
All Possible Random Samples 

When attempting to generalize from a single sample mean to a population mean, must 
consult the sampling distribution of the mean. In the present case, this distribution is based on 
all possible random samples, each of size 100 that can be taken from the local population of 
freshmen. All possible random samples refers not to the number of samples of size 100 
required to survey completely the local population of freshmen but to the number of different 
ways in which a single sample of size 100 can be selected from this population. 

“All possible random samples” tends to be a huge number. For instance, if the local  
population contained at least 1,000 freshmen, the total number of possible random samples, 
each of size 100, would be astronomical in size. The 301 digits in this number would dwarf 
even the national debt. Even with the aid of a computer, it would be a horrendous task to 
construct this sampling distribution from scratch, itemizing each mean for all possible 
random samples. 

Fortunately, statistical theory supplies us with considerable information about the 
sampling distribution of the mean, as will be discussed in the remainder of this chapter. 
Armed with this information about sampling distributions, we’ll return to the current 
example in the next chapter and test the claim that the mean math score for the local 
population of freshmen equals the national average of 500. Only at that point and not at 
the end of this chapter should you expect to understand completely the role of sampling 
distributions in practical applications. 



 

3 . 2 . 1 C R E AT I N G A S A M P L I N G 
D I S T R I B U T I O N F R O M S C R A TC H 

 
Let’s establish precisely what constitutes a sampling distribution by creating one from 

scratch under highly simplified conditions. Imagine some ridiculously small population of 
four observations with values of 2, 3, 4, and 5, as shown in Figure 9.1. Next, itemize all 
possible random samples, each of size two, that could be taken from this population. There 
are four possibilities on the first draw from the population and also four possibilities on the 
second draw from the population, as indicated in Table 9.1.* The two sets of possibilities 
combine to yield a total of 16 possible samples. At this point, remember, we’re clarifying the 
notion of a sampling distribution of the mean. In practice, only a single random sample, not 
16 possible samples, would be taken from the population; the sample size would be very 
small relative to a much larger population size, and, of course, not all observations in the 
population would be known. 

For each of the 16 possible samples, Table 9.1 also lists a sample mean (found by 
adding the two observations and dividing by 2) and its probability of occurrence (expressed 

as 1⁄16, since each of the 16 possible samples is equally likely). When cast into a relative 
frequency or probability distribution, as in Table 9.2, the 16 sample means constitute the 
sampling distribution of the mean, previously defined as the probability distribution of 
means for all possible random samples of a given size from some population. Not all 
values of the sample mean occur with equal probabilities in Table 9.2 since some values 
occur more than once among the 16 possible samples. For instance, a sample mean value of 

3.5 appears among 4 of 16 possibilities and has a probability of 4⁄16. 

1. P ro b ab ili ty  of a P ar ticu lar  S a m p l e M e a n 
The distribution in Table 9.2 can be consulted to determine the probability of obtaining a 

particular sample mean or set of sample means. For example, the probability of a randomly 

selected sample mean of 5.0 equals 1⁄16 or .0625. According to the addition rule for mutually 
exclusive outcomes, the probability of a ran domly selected sample mean of either 5.0 or 2.0 
equals 1 ⁄16 + 1 ⁄16 = 2 ⁄16 = .1250. 



 

 



 

 
 
 
 
 
 
 
 
 

 

3.2.3 MEAN OF ALL SAMPLE MEANS ( ) 
The distribution of sample means itself has a mean. The mean of the sampling 

distribution of the mean always equals the mean of the population. 
Expressed in symbols, 

 
 

 
Where represents the mean of the sampling distribution and μ represents the 
mean of the population. 

 
1. I nte r ch ange ab l e  M e a n s 

 
The mean of all sample means (μX) always equals the mean of the population (μ), 

these two terms are interchangeable in inferential statistics. Any claims about thepopulation 
mean can be transferred directly to the mean of the sampling distribution, and vice versa. If, 
as claimed, the mean math score for the local population of freshmen equals the national  
average of 500, then the mean of the sampling distribution also automatically will equal 500. 
For the same reason, it’s permissible to view the one observed sample mean of 533 as a 
deviation either from the mean of the sampling distribution or from the mean of the 
population. It should be apparent, therefore, that whether an expression involves μX or μ, it 

reflects, at most, a difference in emphasis on either the sampling distribution or the 
population, respectively, rather than any difference in numerical value. 

 
Explanation 

Although important, it’s not particularly startling that the mean of all sample means equals 
the population mean. As can be seen in Figure 9.2, samples are not exact replicas of the 
population, and most sample means are either larger or smaller than the population mean 
(equal to 3.5 in Figure 9.2). By taking the mean of all sample means, however, you effectively 
neutralize chance differences between sample means and retain a value equal to the 
population mean. 

 
 
 
 



 

3 . 2 . 4 S TA N D A R D E R R O R O F TH E M E A N ( ) 
 

The distribution of sample means also has a standard deviation, referred to as the standard 
error of the mean. 

The standard error of the mean equals the standard deviation of the population divided by 
the square root of the sample size. 

 
1. STANDARD ERROR OF THE MEAN ( ) 

Expressed in symbols, 
 
 

. 

 
 
 
 

 
2. Sp ecial  T y p e of S t a n d a r d D e v iatio n 

 
The standard error of the mean serves as a special type of standard deviation that 

measures variability in the sampling distribution. It supplies us with a standard, much like a 
yardstick, that describes the amount by which sample means deviate from the mean of the 
sampling distribution or from the population mean. The error in standard error refers not to 
computational errors, but to errors in generalizations attributable to the fact that, just by 
chance, most random samples aren’t exact replicas of the population. 

 
The standard error of the mean as a rough measure of the average amount by which sample 

means deviate from the mean of the sampling distribution or from the population mean. 
 

Insofar as the shape of the distribution sample means approximates a normal curve, as 
described in the next section, about 68 percent of all sample means deviate less than one 
standard error from the mean of the sampling distribution, whereas only about 5 percent 
of all sample means deviate more than two standard errors from the mean of this 
distribution. 

 
3. Effect of S a m p l e S i z e 

 
A most important implication of Formula 9.2 is that whenever the sample size equals two 

or more, the variability of the sampling distribution is less than that in the population. A 
modest demonstration of this effect appears in Figure 9.2, where the means of all possible 
samples cluster closer to the population mean (equal to 3.5) than do the four original 
observations in the population. A more dramatic demonstration occurs with larger sample 
sizes. Earlier in this chapter, for instance, 110 was given as the value of σ, the population 



 

standard deviation for SAT scores. Much smaller is the variability in the sampling 
distribution of mean SAT scores, each based on samples of 100 freshmen. According to 
Formula 9.2, in the present example, 

 

 
there is a tenfold reduction in variability, from 110 to 11, when our focus shifts from the 
population to the sampling distribution. 

According to Formula 9.2, any increase in sample size translates into a smaller standard 
error and, therefore, into a new sampling distribution with less variability. With a larger 
sample size, sample means cluster more closely about the mean of the sampling distribution 
and about the mean of the population and, therefore, allow more precise generalizations 
from samples to populations. 

 
3 . 2 . 5 S H A P E O F TH E S A M P L I N G D I S T R I B U T I O N 

 
A product of statistical theory, expressed in its simplest form, the central limit 

theorem states that, regardless of the shape of the population, the shape of the 
sampling distribution of the mean approximates a normal curve if the sample size is 
sufficiently large. 

According to this theorem, it doesn’t matter whether the shape of the parent 
population is normal, positively skewed, negatively skewed, or some nameless, bizarre shape, 
as long as the sample size is sufficiently large. What constitutes “sufficiently large” depends 
on the shape of the parent population. If the shape of the parent population is normal, then 
any sample size (even a sample size of one) will be sufficiently large. Otherwise, depending on 
the degree of non-normality in the parent population, a sample size between 25 and 100 is 
sufficiently large. 



 

1. Wh y the Ce ntr al  Limit T h e o r e m W o r k s 
 

In a normal curve, you will recall, intermediate values are the most prevalent, and extreme 
values, either larger or smaller, occupy the tapered flanks. Why, when the sample size is 
large, does the sampling distribution approximate a normal curve, even though the parent 
population might be non-normal? 

 
2. M a n y S a m p l e M e a n s with I nte r me d iate  V a l u e s 

 
When the sample size is large, it is most likely that any single sample will contain the full 

spectrum of small, intermediate, and large scores from the parent population, whatever its 
shape. The calculation of a mean for this type of sample tends to neutralize or dilute the 
effects of any extreme scores, and the sample mean emerges with some intermediate value. 

Accordingly, intermediate values prevail in the sampling distribution, and they cluster 
around a peak frequency representing the most common or modal value of the sample mean, 
as suggested at the bottom of Figure 9.3. 

 
3. Fe w S a m p l e M e a n s with E x t r e m e V a l u e s 

 
To account for the rarer sample mean values in the tails of the sampling distribution, focus 

on those relatively infrequent samples that, just by chance, contain less than the full 
spectrum of scores from the parent population. Sometimes, because of the relatively large 
number of extreme scores in a particular direction, the calculation of a mean only slightly 
dilutes their effect, and the sample mean emerges with some more extreme value. The 
likelihood of obtaining extreme sample mean values declines with the extremity of the value, 
producing the smoothly tapered, slender tails that characterize a normal curve. 

 
3.3 HYPOTHESIS TESTING 

3 . 3 . 1 T E S T I N G A HYPOTHESIS ABOUT SAT SCORES 

Test the hypothesis that, with respect to the national average, nothing special is 
happening in the local population. Insofar as an investigator usually suspects just the 
opposite namely, that something special is happening in the local population he or she hopes 
to reject the hypothesis that nothing special is happening, henceforth referred to as the null 
hypothesis and defined more formally in a later section. 

 
1. H y p o t h e s i z e d Sampling Distribution 

 
If the null hypothesis is true, then the distribution of sample means that is, the sampling 
distribution of the mean for all possible random samples, each of size 100, from the local 
population of freshmen will be centered about the national average of 500. (Remember, the 
mean of the sampling distribution always equals the population mean). 



 

In Figure 10.1, this sampling distribution is referred to as the hypothesized sampling 
distribution, since its mean equals 500, the hypothesized mean reading score for the local 
population of freshmen. 
Anticipating the key role of the hypothesized sampling distribution in our hypothesis test,  
let’s focus on two more properties of this distribution: 

 
i. In Figure 10.1, vertical lines appear, at intervals of size 11, on either side of the 

hypothesized population mean of 500. These intervals reflect the size of the 
standard error of the mean, . To verify this fact, originally demonstrated in 
Chapter 9, substitute 110 for the population standard deviation, σ, and 100 for the 
sample size, n, in Formula 9.2 to obtain 

 
 
 

ii. Notice that the shape of the hypothesized sampling distribution in Figure 10.1 
approximates a normal curve, since the sample size of 100 is large enough to 
satisfy the requirements of the central limit theorem. Eventually, with the aid of 
normal curve tables, we will be able to construct boundaries for common and rare 
outcomes under the null hypothesis. 

 
 
 
 
 
 
 
 
 
 
 
 
 

The null hypothesis that the population mean for the freshman class equals 500 is 
tentatively assumed to be true. It is tested by determining whether the one observed sample 
mean qualifies as a common outcome or a rare outcome in the hypothesized sampling 
distribution of Figure 10.1. 

 
2. C o m m o n O u t c o m e s 

 
An observed sample mean qualifies as a common outcome if the difference between its 

value and that of the hypothesized population mean is small enough to be viewed as a probable 
outcome under the null hypothesis. 



 

That is, a sample mean qualifies as a common outcome if it doesn’t deviate too far from 
the hypothesized population mean but appears to emerge from the dense concentration of 
possible sample means in the middle of the sampling distribution. A common outcome 
signifies a lack of evidence that, with respect to the null hypothesis, something special is 
happening in the underlying population. Because now there is no compelling reason for 
rejecting the null hypothesis, it is retained. 

 
3. R a r e O u t c o m e s 

 
An observed sample mean qualifies as a rare outcome if the difference between its value 

and the hypothesized population mean is too large to be reasonably viewed as a probable 
outcome under the null hypothesis. 

 
That is, a sample mean qualifies as a rare outcome if it deviates too far from the 

hypothesized mean and appears to emerge from the sparse concentration of possible sample 
means in either tail of the sampling distribution. A rare outcome signifies that, with respect 
to the null hypothesis, something special probably is happening in the underlying population. 
Because now there are grounds for suspecting the null hypothesis, it is rejected. 

 
4. B o u n d a r i e s for C o m m o n an d Rar e O u t c o m e s 

 
Superimposed on the hypothesized sampling distribution in Figure 10.2 is one 

possible set of boundaries for common and rare outcomes, expressed in values of X. If the one 
observed sample mean is located between 478 and 522, it will qualify as a common outcome 
(readily attributed to variability) under the null hypothesis, and the null hypothesis will be 
retained. If, however, the one observed sample mean is greater than 522 or less than 478, it 
will qualify as a rare outcome (not readily attributed to variability) under the null 
hypothesis, and the null hypothesis will be rejected. Because the observed sample mean of 
533 does exceed 522, the null hypothesis is rejected. On the basis of the present test, it is 
unlikely that the sample of 100 freshmen, with a mean math score of 533, originates from a 
population whose mean equals the national average of 500, and, therefore, the investigator 
can conclude that the mean math score for the local population of freshmen probably differs 
from (exceeds) the national average. 



 

3.3.2 z T E S T FO  R A P O P U L AT I O N M E A N 
 

For the hypothesis test with SAT math scores, it is customary to base the test not on the 
hypothesized sampling distribution of X shown in Figure 10.2, but on its standardized 
counterpart, the hypothesized sampling distribution of z shown in Figure 10.3. Now z 
represents a variation on the familiar standard score, and it displays all of the properties of 
standard scores. 

 
Furthermore, like the sampling distribution of , the sampling distribution of z 
represents the distribution of z values that would be obtained if a value of z were calculated 
for each sample mean for all possible random samples of a given size from some 
population. 

The conversion from X to z yields a distribution that approximates the standard 
normal curve in Table A of Appendix C, since, as indicated in Figure 10.3, the original 
hypothesized population mean (500) emerges as a z score of 0 and the original standard error 
of the mean (11) emerges as a z score of 1. The shift from    to z eliminates the original units 
of measurement and standardizes the hypothesis test across all situations without, however, 
affecting the test results. 

 
1. C o n v e r t i n g a Raw Score to z 

 
To convert a raw score into a standard score, express the raw score as a distance from its 

mean (by subtracting the mean from the raw score), and then split this distance into 
standard deviation units (by dividing with the standard deviation). Expressing this definition 
as a word formula, we have in which, of course, the standard score indicates the deviation of 
the raw score in standard deviation units, above or below the mean. 



 

. 

2. Converting a Sam p l e Mean to z 
 

The z for the present situation emerges as a slight variation of this word formula: Replace 
the raw score with the one observed sample mean X; replace the mean with the mean of the 

sampling distribution, that is, the hypothesized population mean μhyp;and replace the 

standard deviation with the standard error of the mean Now 

 
 
 
 
 

 
where z indicates the deviation of the observed sample mean in standard error units, above 
or below the hypothesized population mean. 

To test the hypothesis for SAT scores, we must determine the value of z from Formula 
10.1. Given a sample mean of 533, a hypothesized population mean of 500, and a standard 
error of 11, we find 

 
 

The observed z of 3 exceeds the value of 1.96 specified in the hypothesized sampling 
distribution in Figure 10.3. Thus, the observed z qualifies as a rare outcome under the null 
hypothesis, and the null hypothesis is rejected. The results of this test with z are the same as 
those for the original hypothesis test with 

 
 
 
 
 
 

A s s u m p t i on s of z 
T e s t 

 
3 . 3 . 3 S T E P - B Y- S T E P PROCEDURE 

 
The more important features of hypothesis testing, let’s take a detailed look at the test  

for SAT scores. The test procedure lends itself to a step-by-step description, beginning with a 
brief statement of the problem that inspired the test and ending with an interpretation of the 
test results. The following box summarizes the step-by-step procedure for the current 
hypothesis test. 



 

3. 3 . 4 S TAT E M E N T OF THE RESEARCH PROBLEM 
 

The formulation of a research problem often represents the most crucial and exciting phase 
of an investigation. Indeed, the mark of a skillful investigator is to focus on an important 
research problem that can be answered. Do children from broken families score lower on 
tests of personal adjustment? Do aggressive TV cartoons incite more disruptive behavior in 
preschool children? Does profit sharing increase the productivity of employees? Because of 
our emphasis on hypothesis testing, research problems appear in this book as finished 
products, usually in the first one or two sentences of a new example. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 . 3 . 5 N U L L H Y P O T H E SI S (H0 ) 

Once the problem has been described, it must be translated into a statistical hypoth- esis 
regarding some population characteristic. Abbreviated as H 0 , the null hypothesis becomes 

the focal point for the entire test procedure (even though we usually hope to reject it). In the 
test with SAT scores, the null hypothesis asserts that, with respect to the national average of 
500, nothing special is happening to the mean score for the local population of freshmen. An 
equivalent statement, in symbols, reads: 

 



 

where H0 represents the null hypothesis and μ is the population mean for the local 
freshman class. 

Generally speaking, the null hypothesis (H0) is a statistical hypothesis that usually 

asserts that nothing special is happening with respect to some characteristic of the 
underlying population. Because the hypothesis testing procedure requires that the 
hypothesized sampling distribution of the mean be centered about a single number (500), the 
null hypothesis equals a single number (H : μ=500). Furthermore, the null hypothesis always  
makes a precise statement about a characteristic of the population, never about a sample. 
Remember, the purpose of a hypothesis test is to determine whether a particular outcome, 
such as an observed sample mean, could have reason- ably originated from a population with 
the hypothesized characteristic. 

 

Finding the Single N u m b e r for H 0 

The single number actually used in H 0   varies from problem to problem. Even for a 
given problem, this number could originate from any of several sources. For instance, it could 
be based on available information about some relevant population other than the target 
population, as in the present example in which 500 reflects the mean SAT math scores for all 
college-bound students during a recent year. It also could be based on some existing standard 
or theory for example, that the mean math score for the current population of local freshmen 
should equal 540 because that happens to be the mean score achieved by all local freshmen 
during recent years. 
If, as sometimes happens, it’s impossible to identify a meaningful null hypothesis, don’t try to 
salvage the situation with arbitrary numbers. Instead, use another entirely different 
technique, known as estimation, which is described in Chapter 12. 

 
3. 3 . 6 A LT E R N AT I V E H Y P O T H E S I S (H1 ) 

In the present example, the alternative hypothesis asserts that, with respect to the national 
average of 500, something special is happening to the mean math score for the local population 
of freshmen (because the mean for the local population doesn’t equal the national average of 
500). An equivalent statement, in symbols, reads: 

 

represents the alternative hypothesis, μ is the population mean for the local freshman class, 
and signifies, “is not equal to.” The alternative hypothesis (H1) asserts the opposite of the 

null hypothesis. A decision to retain the null hypothesis implies a lack of support for the 
alternative hypothesis, and a decision to reject the null hypothesis implies support for the 
alternative hypothesis. 



 

3. 3 . 7 D E C I S I O N R U L E 
 

A decision rule specifies precisely when H0 should be rejected (because the observed z 
qualifies as a rare outcome). There are many possible decision rules, as will be seen in 
Section 11.3. A very common one, already introduced in Figure 10.3, specifies that H0 
should be rejected if the observed z equals or is more positive than 1.96 or if the observed z 
equals or is more negative than –1.96. Conversely, H0 should be retained if the observed z 
falls between ± 1.96. 

 
1. Critical z Scores 

 
Figure 10.4 indicates that z scores of ± 1.96 define the boundaries for the middle .95 of 

the total area (1.00) under the hypothesized sampling distribution for z. Derived from the 
normal curve table, as you can verify by checking Table A in Appendix C, these two z scores 
separate common from rare outcomes and hence dictate whether H0 should be retained or 
rejected. Because of their vital role in the decision about H0 , these scores are referred to as 
critical z scores. 

 
2. Level of Significance (α) 
Figure 10.4 also indicates the proportion (.025 .025 .05) of the total area that is identified 
with rare outcomes. Often referred to as the level of significance of the statistical test, this 
proportion is symbolized by the Greek letter α (alpha). In the present example, the level of  
significance, α, equals .05. 

 
 
 
 
 
 
 
 

 
The level of significance (α) indicates the degree of rarity required of an observed outcome in 
order to reject the null hypothesis (H0). For instance, the .05 level of significance indicates 
that H0 should be rejected if the observed z could have occurred just by chance with a 
probability of only .05 (one chance out of twenty) or less. 



 

3. 3 . 8 C A L C U L AT I O N S 
Use information from the sample to calculate a value for z. As has been noted previously, use 
Formula 10.1 to convert the observed sample mean of 533 into a z of 3. 

 
3. 3 . 9 D E C I S I O N 

Either retain or reject H0 , depending on the location, of the observed z value relative 
to the critical z values specified in the decision rule. According to the present rule, H0 should0 

be rejected at the .05 level of significance because the observed z of 3 exceeds the critical z 
of 1.96 and, therefore, qualifies as a rare outcome, that is, an unlikely outcome from a 
population centered about the null hypothesis. 

 
1. Retai n or Re ject H 0 ? 

If you are ever confused about whether to retain or reject H 0, recall the logic behind the 
hypothesis  test.  You  want  to  reject  H  on0ly  if  the  observed  value  of  z  qualifies  as  a  rare 
outcome because it deviates too far into the tails of the sampling distribution. Therefore, 
you want to reject H0. 

Only if the observed value of z equals or is more positive than the upper critical z 
(1.96) or if it equals or is more negative than the lower critical z (–1.96). Before deciding, you 
might find it helpful to sketch the hypothesized sampling distribution, along with its critical z 
values and shaded rejection regions, and then use some mark, such as an arrow ( ), to 
designate the location of the observed value of z (3) along the z scale. If this mark is located in 
the shaded rejection region or farther out than this region, as in Figure 10.4—then H0 should 
be rejected. 

 
3.3.10 INTERPRETATION 

Finally, interpret the decision in terms of the original research problem. In the 
present example, it can be concluded that, since the null hypothesis was rejected, the mean 
SAT math score for the local freshman class probably differs from the national average of 
500. Although not a strict consequence of the present test, a more specific conclusion is 
possible. Since the sample mean of 533 (or its equivalent z of 3) falls in the upper rejection 
region of the hypothesized sampling distribution, it can be concluded that the population 
mean SAT math score for all local freshmen probably exceeds the national average of 500. By 
the same token, if the observed sample mean or its equivalent z had fallen in the lower 
rejection region of the hypothesized sampling distribution, it could have been concluded that 
the population mean for all local freshmen probably is below the national average. If the 
observed sample mean or its equivalent z had fallen in the retention region of the 
hypothesized sampling distribution, it would have been concluded (somewhat weakly, as 
discussed in Section 11.2) that there is no evidence that the population mean for all local 
freshmen differs from the national average of 500. 

3.4.1 WHY HYPOTHESIS TESTS? 
There is a crucial link between hypothesis tests and the need of investigators, 

whether pollsters or researchers, to generalize beyond existing data. If the 100 freshmen in 
the SAT example of the previous chapter had been not a sample but a census of the entire 
freshman class, there wouldn’t have been any need to generalize beyond existing data, and it  
would have been inappropriate to conduct a hypothesis test. Now, the observed difference 



 

between the newly observed population mean of 533 and the national average of 500, by 
itself, would have been sufficient grounds for concluding that the mean SAT math score for 
all local freshmen exceeds the national average. Indeed, any observed difference in favor of 
the local freshmen, regardless of the size of the difference, would have supported this 
conclusion. 

If we must generalize beyond the 100 freshmen to a larger local population, as was 
actually the case, the observed difference between 533 and 500 cannot be interpreted at face 
value. The basic problem is that the sample mean for a second random sample of 100 
freshmen probably would differ, just by chance, from the sample mean of 533 for the first 
sample. Accordingly, the variability among sample means must be considered when we 
attempt to decide whether the observed difference between 533 and 500 is real or merely 
transitory. 

1. Importance of the Standard Error 
To evaluate the effect of chance, we use the concept of a sampling distribution, that is, 

the concept of the sample means for all possible random outcomes. A key element in this 
concept is the standard error of the mean, a measure of the average amount by which sample 
means differ, just by chance, from the population mean. Dividing the observed difference 
(533−500) by the standard error (11) to obtain a value of z (3) locates the original observed  
difference along a z scale of either common outcomes (reasonably attributable to chance) or 
rare outcomes (not reasonably attributable to chance). If, when expressed as z, the ratio of 
the observed difference to the standard error is small enough to be reasonably attributed to 
chance, we retain H0. Otherwise, if the ratio of the observed difference to the standard error 
is too large to be reasonably attributed to chance, as in the SAT example, we reject H0. 

Before generalizing beyond the existing data, we must always measure the effect of 
chance; that is, we must obtain a value for the standard error. To appreciate the vital role of 
the standard error in the SAT example, increase its value from 11 to 33 and note that even 
though the observed difference remains the same (533−500), we would retain, not reject, H0 
because now z would equal 1 (rather than 3) and be less than the critical z of 1.96. 

2. Possibility of Incorrect Decisions 
Having made a decision about the null hypothesis, we never know absolutely 

whether that decision is correct or incorrect, unless, of course, we survey the entire 
population. Even if H0 is true (and, therefore, the hypothesized distribution of z about H0 
also is true), there is a slight possibility that, just by chance, the one observed z actually 
originates from one of the shaded rejection regions of the hypothesized distribution of z, 
thus causing the true H0 to be rejected. This type of incorrect decision—rejecting a true 
H0—is referred to as a type I error or a false alarm. 

On first impulse, it might seem desirable to abolish the shaded rejection regions 
in the hypothesized sampling distribution to ensure that a true H0 never is rejected. A most 
unfortunate consequence of this strategy, however, is that no H0, not even a radically false 
H0, ever would be rejected. This second type of incorrect decision—retaining a false H0—is 
referred to as a type II error or a miss. Both type I and type II errors are described in more 
detail later in this chapter. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Minimizing Incorrect Decisions 
Traditional hypothesis-testing procedures, such as the one illustrated in Figure 11.1, 

tend to minimize both types of incorrect decisions. If H0 is true, there is a high probability 
that the observed z will qualify as a common outcome under the hypothesized sampling 
distribution and that the true H0 will be retained. (In Figure 11.1, this probability equals the 
proportion of white area (.95) in the hypothesized sampling distribution.) 

On the other hand, if H0 is seriously false, because the hypothesized population mean 
differs considerably from the true population mean, there is also a high probability that the 
observed z will qualify as a rare outcome under the hypothesized distribution and that the 
false H0 will be rejected. (In Figure 11.1, this probability can’t be determined since; in this 
case, the hypothesized sampling distribution does not actually reflect the true sampling 
distribution. 

Even though we never really know whether a particular decision is correct or 
incorrect, it is reassuring that in the long run, most decisions will be correct— assuming the 
null hypotheses are either true or seriously false 

 
3.4.2 STRONG OR WEAK DECISIONS 

 
1. Retaining H0 Is a Weak Decision 

There are subtle but important differences in the interpretation of decisions to 
retain H0 and to reject H0. H0 is retained whenever the observed z qualifies as a common 
outcome on the assumption that H0 is true. Therefore, H0 could be true. However, the same 
observed result also would qualify as a common outcome when the original value in H0 (500) 
is replaced with a slightly different value. Thus, the retention of H0 must be viewed as a 
relatively weak decision. Because of this weakness, many statisticians prefer to describe this 
decision as simply a failure to reject H0 rather than as the retention of H0. In any event, the 
retention of H0 can’t be interpreted as proving H0 to be true. If H0 had been retained in the 
present example, it would have been appropriate to conclude not that the mean SAT math 
score for all local fresh men equals the national average, but that the mean SAT math score 
could equal the national average, as well as many other possible values in the general vicinity 
of the national average. 



 

2. Rejecting H0 Is a Strong Decision 

 

On the other hand, H0 is rejected whenever the observed z qualifies as a rare outcome one 

that could have occurred just by chance with a probability of .05 or less on the assumption that H0 

is true. This suspiciously rare outcome implies that H0 is probably false (and conversely, that H1 is 

probably true). Therefore, the rejection of H0 can be viewed as a strong decision. When H0 was 

rejected in the present example, it was appropriate to report a definitive conclusion that the mean 

SAT math score for all local freshmen probably exceeds the national average. 

To summarize, 
The decision to retain H0 implies not that H0 is probably true, but only that H0 

could be true, whereas the decision to reject H0 implies that H0 is probably false (and 
that H1 is probably true). 

Since most investigators hope to reject H0 in favor of H1, the relative weakness of the 
decision to retain H0 usually does not pose a serious problem. 

3. Why the Research Hypothesis Isn’t Tested Directly 
Even though H0, the null hypothesis, is the focus of a statistical test, it is usually of 

secondary concern to the investigator. Nevertheless, there are several reasons why, although 
of primary concern, the research hypothesis is identified with H1 and tested indirectly. 

4. Lacks Necessary Precision 

The research hypothesis, but not the null hypothesis, lacks the necessary 
precision to be tested directly. 

 
To be tested, a hypothesis must specify a single number about which the 

hypothesized sampling distribution can be constructed. Because it specifies a single number, 
the null hypothesis, rather than the research hypothesis, is tested directly. In the SAT 
example, the null hypothesis specifies that a precise value (the national average of 500) 
describes the mean for the current population of interest (all local freshmen). Typically, the 
research hypothesis lacks the required precision. It merely specifies that some inequality 
exists between the hypothesized value (500) and the mean for the current population of 
interest (all local freshmen). 

5. Supported by a Strong Decision to Reject 
Logical considerations also argue for the indirect testing of the research hypothesis 

and the direct testing of the null hypothesis. 

Because the research hypothesis is identified with the alternative hypothesis, 
the decision to reject the null hypothesis, should it be made, will provide strong 
support for the research hypothesis, while the decision to retain the null hypothesis, 
should it be made, will provide, at most, weak support for the null hypothesis. 

As mentioned, the decision to reject the null hypothesis is stronger than the decision 
to retain it. Logically, a statement such as “All cows have four legs” can never be proven in 
spite of a steady stream of positive instances. It only takes one negative instance—one cow 
with three legs—to disprove the statement. By the same token, one positive instance 



 

(common outcome) doesn’t prove the null hypothesis, but one negative instance (rare 
outcome) disproves the null hypothesis. (Strictly speaking, however, since a rare outcome 
implies that the null hypothesis is probably but not definitely false, remember that there 
always is a very small possibility that the rare outcome reflects a true null hypothesis). 

Logically, therefore, it makes sense to identify the research hypothesis with the 
alternative hypothesis. If, as hoped, the data favor the research hypothesis, the test will  
generate strong support for your hunch: It’s probably true. If the data do not favor the 
research hypothesis, the hypothesis test will generate, at most, weak support for the null 
hypothesis: It could be true. Weak support for the null hypothesis is of little consequence, as 
this hypothesis that nothing special is happening in the population usually serves only as a 
convenient testing device. 

 
3.4.3 ONE-TAILED AND TWO-TAILED TESTS 

Two-Tailed Test Generally, the alternative hypothesis, H1, is the complement of 
the null hypothesis, H0. Under typical conditions, the form of H1 resembles that shown for 
the SAT example, namely, 

 

This alternative hypothesis says that the null hypothesis should be rejected if the mean 
reading score for the population of local freshmen differs in either direction from the 
national average of 500. An observed z will qualify as a rare outcome if it deviates too far 
either below or above the national average. Panel A of Figure 11.2 shows rejection regions 
that are associated with both tails of the hypothesized sampling distribution. The 
corresponding decision rule, with its pair of critical z scores of ±1.96, is referred to as a two- 
tailed or nondirectional test. 

 
1. One-Tailed Test (Lower Tail Critical) 

Now let’s assume that the research hypothesis for the investigation of SAT math 
scores was based on complaints from instructors about the poor preparation of local 
freshmen. Assume also that if the investigation supports these complaints, a remedial 
program will be instituted. Under these circumstances, the investigator might prefer a 
hypothesis test that is specially designed to detect only whether the population mean math 
score for all local freshmen is less than the national average. 

This alternative hypothesis reads: 

 

It reflects a concern that the null hypothesis should be rejected only if the population mean 
math score for all local freshmen is less than the national average of 500. Accord ingly, an 
observed z triggers the decision to reject H0 only if z deviates too far below the national 
average. Panel B of Figure 11.2 illustrates a rejection region that is associated with only the 
lower tail of the hypothesized sampling distribution. The corresponding decision rule, with 
its critical z of –1.65, is referred to as a one-tailed or directional test with the lower tail 
critical. Use Table A in Appendix C to verify that if the critical z equals –1.65; then .05 of the 
total area under the distribution of z has been allocated to the lower rejection region. Notice 
that the level of significance, α, equals .05 for this one-tailed test and also for the original 
two-tailed test. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Extra Sensitivity of One-Tailed Tests 
This new one-tailed test is extra sensitive to any drop in the population mean for the 

local freshmen below the national average. If H0 is false because a drop has occurred, then 
the observed z will be more likely to deviate below the national average. As can be seen in 
panels A and B of Figure 11.2, an observed deviation in the direction of concern below the 
national average is more likely to penetrate the broader rejection region for the one-tailed 
test than that for the two-tailed test. Therefore, the decision to reject a false H0 (in favor of 
the research hypothesis) is more likely to occur in the one-tailed test than in the two-tailed 
test. 

 
3. One-Tailed Test (Upper Tail Critical) 

Panel C of Figure 11.2 illustrates a one-tailed or directional test with the upper tail 
critical. This one-tailed test is the mirror image of the previous test. Now the alternative 
hypothesis reads: 

 

and its critical z equals 1.65. This test is specially designed to detect only whether the 
population mean math score for all local freshmen exceeds the national average. For 
example, the research hypothesis for this investigation might have been inspired by the 
possibility of eliminating an existing remedial math program if it can be demonstrated that, 
on the average, the SAT math scores of all local freshmen exceed the national average. 



 

4. One or Two Tails? 
Before a hypothesis test, if there is a concern that the true population mean differs from 

the hypothesized population mean only in a particular direction, use the appropriate one- 
tailed or directional test for extra sensitivity. Otherwise, use the more customary two-tailed 
or nondirectional test. Having committed yourself to a one-tailed test with its single rejection 
region, you must retain H0, regardless of how far the observed z deviates from the 
hypothesized population mean in the direction of “no concern.” For instance, if a one-tailed 
test with the lower tail critical had been used with the data for 100 freshmen from the SAT 
example, H0 would have been retained because, even though the observed z equals an 
impressive value of 3, it deviates in the direction of no concern in this case, above the 
national average. Clearly, a one-tailed test should be adopted only when there is absolutely 
no concern about deviations, even very large deviations, in one direction. If there is the 
slightest concern about these deviations, use a two-tailed test. The selection of a one- or two- 
tailed test should be made before the data are collected. Never “peek” at the value of the 
observed z to determine whether to locate the rejection region for a one-tailed test in the 
upper or the lower tail of the distribution of z. To qualify as a one-tailed test, the location of 
the rejection region must reflect the investigator’s concern only about deviations in a 
particular direction before any inspection of the data. Indeed, the investigator should be able 
to muster a compelling reason, based on an understanding of the research hypothesis, to 
support the direction of the one-tailed test. 

 
5. New Null Hypothesis for One-Tailed Tests 

 
When tests are one-tailed, a complete statement of the null hypothesis also should 

include all possible values of the population mean in the direction of no concern. For 
example, given a one-tailed test with the lower tail critical, such as H1: μ < 500, the complete  
null hypothesis should be stated as H0: μ ≥ 500 instead of H0: μ = 500. By the same token,  
given a one-tailed test with the upper tail critical, such as H1: μ > 500, the complete null 
hypothesis should be stated as H0: μ ≤ 500. If you think about it, the complete H0 describes  
all of the population means that could be true if a one-tailed test results in the retention of 
the null hypothesis. For instance, if a one-tailed test with the lower tail critical results in the 
retention of H0: μ ≥ 500, the complete H0 accurately reflects the fact that not only μ = 500  
could be true, but also that any other value of the population mean in the direction of no 
concern, that is, μ > 500, could be true. (Remember, when the test is one-tailed, even a very 
deviant result in the direction of no concern possibly reflecting a mean much larger than 500 
still would trigger the decision to retain H0.) Henceforth, whenever a one-tailed test is 
employed, write H0 to include values of the population mean in the direction of no concern 
even though the single number in the complete H0 identified by the equality sign is the one 
value about which the hypothesized sampling distribution is centered and, therefore, the one 
value actually used in the hypothesis test. 



 

. 

3.5 ESTIMATION 
3.5.1 POINT ESTIMATE FOR μ 

A point estimate for μ uses a single value to represent the unknown population mean. 
This is the most straightforward type of estimate. If a random sample of 100 local freshmen 
reveals a sample mean SAT score of 533, then 533 will be the point estimate of the unknown 
population mean for all local freshmen. The best single point estimate for the unknown 
population mean is simply the observed value of the sample mean. 

 
A Basic Deficiency 

 
Although straightforward, simple, and precise, point estimates suffer from a basic 

deficiency. They tend to be inaccurate. Because of sampling variability, it’s unlikely that a  
single sample mean, such as 533, will coincide with the population mean. Since point 
estimates convey no information about the degree of inaccuracy due to sampling variability, 
statisticians supplement point estimates with another, more realistic type of estimate, 
known as interval estimates or confidence intervals. 

 
3.5.2 CONFIDENCE INTERVAL (CI) FOR μ 

A confidence interval for μ uses a range of values that, with a known degree of 
certainty, includes the unknown population mean. For instance, the SAT investigator might 
use a confidence interval to claim, with 95 percent confidence, that the interval between 
511.44 and 554.56 includes the population mean math score for all local freshmen. To be 95 
percent confident signifies that if many of these intervals were constructed for a long series 
of samples, approximately 95 percent would include the population mean for all local 
freshmen. In the long run, 95 percent of these confidence intervals are true because they 
include the unknown population mean. The remaining 5 percent are false because they fail to 
include the unknown population mean. 

 
1. Why Confidence Intervals Work 

To understand confidence intervals, you must view them in the context of three 
important properties of the sampling distribution of the mean. 

For the sampling distribution from which the sample mean of 533 originates, as shown in 

Figure 12.1, the three important properties are as follows: 

■ The mean of the sampling distribution equals the unknown population mean for all local 

freshmen, whatever its value, because the mean of this sampling distribution always equals the 

population mean. 

■ The standard error of the sampling distribution equals the value (11) obtained from dividing 

the population standard deviation (110) by the square root of the sample size 

■ The shape of the sampling distribution approximates a normal distribution because 
the sample size of 100 satisfies the requirements of the central limit theorem. 

2. A Series of Confidence Intervals 

In practice, only one sample mean is actually taken from this sampling distribution and 
used to construct a single 95 percent confidence interval. However, imagine taking not just 
one but a series of randomly selected sample means from this sampling distribution. Because 



 

of sampling variability, these sample means tend to differ among themselves. For each 
sample mean, construct a 95 percent confidence interval by adding 1.96 standard errors to 
the sample mean and subtracting 1.96 standard errors from the sample mean; that is, use the 
expression. 

 
 

to obtain a 95 percent confidence interval for each sample mean. 
 

3. True Confidence Intervals 
According to statistical theory, do 95 percent of these confidence intervals 

include the unknown population mean? As indicated in Figure 12.2, because the sampling 
distribution is normal, 95 percent of all sample means are within 1.96 standard errors of the 
unknown population mean, that is, 95 percent of all sample means deviate less than 1.96 
standard errors from the unknown population mean. Therefore, and this is the key point, 
when sample means are expanded into confidence intervals by adding and subtracting 1.96 
standard errors 95 percent of all possible confidence intervals are true because they include 
the unknown population mean. To illustrate 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

this point, 15 of the 16 sample means shown in Figure 12.2 are within 1.96 standard errors 
of the unknown population mean. The corresponding 15 confidence intervals have ranges 
that span the broken line for the population mean, thereby qualifying as true intervals 
because they include the value of the unknown population mean. 

 
4. False Confidence Intervals 

 
Five percent of all confidence intervals fail to include the unknown population mean. As 

indicated in Figure 12.2, 5 percent of all sample means (2.5 percent in each tail) deviate more 
than 1.96 standard errors from the unknown population mean. Therefore, when sample 
means are expanded into confidence intervals—by adding and subtracting 1.96 standard 
errors—5 percent of all possible confidence intervals are false because they fail to include 
the unknown population mean. To illustrate this point, only 1 of the 16 sample means shown 
in Figure 12.2 is not within 1.96 standard errors of the unknown population mean. 



 

The resulting confidence interval, shown as shaded, has a range that does not span the 
broken line for the population mean, thereby being designated as a false interval because it  
fails to include the value of the unknown population mean. 

 
5. Confidence Interval for μ Based on z 

 
To determine the previously reported confidence interval of 511.44 to 554.56 for the 

unknown mean math score of all local freshmen, use the following general expression: 

 
 
 

 
where represents the sample mean; zconf represents a number from the standard normal 
table that satisfies the confidence specifications for the confidence interval; and σx 
represents the standard error of the mean. Given that , the sample mean SAT math score, 
equals 533, that zconf equals 1.96 (from the standard normal tables, where z scores of ±1.96 
define the middle 95 percent of the area under the normal curve), and that the standard 
error, σx, equals 11, Formula 12.1 becomes where represents the sample mean; zconf 

represents a number from the standard normal table that satisfies the confidence 
specifications for the confidence interval; and σx represents the standard error of the mean.  
Given that , the sample mean SAT math score, equals 533, that zconf equals 1.96 (from the 
standard normal tables, where z scores of ±1.96 define the middle 95 percent of the area 
under the normal curve), and that the standard error, σx, equals 11, Formula 12.1 becomes 

 
 

 
where 554.56 and 511.44 represent the upper and lower limits of the confidence inter val. 
Now it can be claimed, with 95 percent confidence, that the interval between 511.44 and 
554.56 includes the value of the unknown mean math score for all local freshmen. 

 
3.5.3 INTERPRETATION OF A CONFIDENCE INTERVAL 

 
A 95 percent confidence claim reflects a long-term performance rating for an extended series 
of confidence intervals. If a series of confidence intervals is constructed to estimate the same 
population mean, as in Figure 12.2, approximately 95 percent of these intervals should 
include the population mean. In practice, only one confidence interval, not a series of 
intervals, is constructed, and that one interval is either true or false, because it either 
includes the population mean or fails to include the population mean. Of course, we never 
really know whether a particular confidence interval is true or false unless the entire 
population is surveyed. However, when the level of confidence equals 95 percent or more, 
we can be reasonably confident that the one observed confidence interval includes the true 
population mean. 



 

For instance, we can be reasonably confident that the true population mean math score 
for all local freshmen is neither less than 511.44 nor more than 554.56. That’s the same as  
being reasonably confident that the true population mean for all local freshmen is between 
511.44 and 554.56. 

3.5.4 LEVEL OF CONFIDENCE 
 

The level of confidence indicates the percent of time that a series of confidence 
intervals includes the unknown population characteristic, such as the population mean. Any 
level of confidence may be assigned to a confidence interval merely by substituting an 
appropriate value for zconf in Formula 12.1. For instance, to construct a 99 percent confidence 
interval from the data for SAT math scores, first consult Table A in Appendix C to verify that 
zconf values of ±2.58 define the middle 99 percent of the total area under the normal curve. 
Then substitute numbers for symbols in Formula 12.1 to obtain 

 
 

 
It can be claimed, with 99 percent confidence, that the interval between 504.62 and 561.38 
includes the value of the unknown mean math score for all local freshmen. This implies that, 
in the long run, 99 percent of these confidence intervals will include the unknown population 
mean. 

 
1. Effect on Width of Interval 

 
Notice that the 99 percent confidence interval of 504.62 to 561.38 is wider and, therefore, 

less precise than the corresponding 95 percent confidence interval of 511.44 to 554.56. The 
shift from a 95 percent to a 99 percent level of confidence requires an increase in the value of 
zconf from 1.96 to 2.58. This increase, in turn, causes a wider, less precise confidence 
interval. Any shift to a higher level of confidence always produces a wider, less precise 
confidence interval unless offset by an increase in sample size. 

 
2. Choosing a Level of Confidence 

 
Although many different levels of confidence have been used, 95 percent and 99 percent are 
the most prevalent. Generally, a larger level of confidence, such as 99 per cent, should be 
reserved for situations in which a false interval might have particularly serious 
consequences, such as the failure of a national opinion pollster to predict the winner of a 
presidential election. 

 
3.5.5 EFFECT OF SAMPLE SIZE 

 
The larger the sample size, the smaller the standard error and, hence, the more 

precise (narrower) the confidence interval will be. Indeed, as the sample size grows larger, 
the standard error will approach zero and the confidence interval will shrink to a point 



 

estimate. Given this perspective, the sample size for a confidence interval, unlike that for a 
hypothesis test, never can be too large. 

 
Selection of Sample Size 

 
The hypothesis tests, sample size can be selected according to specifications 

established before the investigation. To generate a confidence interval that possesses the 
desired precision (width). Valid use of these formulas requires that before the investigation, 
the population standard deviation be either known or estimated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

UNIT III 

INFERENTIAL STATISTICS 

Populations – samples – random sampling – Sampling distribution- standard error of the mean - Hypothesis 

testing – z-test – z-test procedure –decision rule – calculations – decisions – interpretations - one-tailed and two- 

tailed tests – Estimation – point estimate – confidence interval – level of confidence – effect of sample size. 

 

 

PART - A 

 

1) What is population? 

 

In statistics, population is the entire set of items from which you draw data for a statistical 

study. It can be a group of individuals, a set of items, etc. It makes up the data pool for a study. 

 

2) What is a sample? 

 

A sample represents the group of interest from the population, which you will use to represent the data. 

The sample is an unbiased subset of the population that best represents the whole data. 

 

3) When are samples used? 

 

 The population is too large to collect data. 

 The data collected is not reliable. 

 The population is hypothetical and is unlimited in size. Take the example of a study thatdocuments 

the results of a new medical procedure. It is unknown how the procedure willaffect people across 

the globe, so a test group is used to find out how people react to it. 

 

4) Difference Between Population and Sample? 

 

Population Samples 

All residents of a country would constitute the 

Population set 

All residents who live above the poverty line 
would be the Sample 

All residents above the poverty line in a All residents who are millionaires would make 

 

 

 

 

 

 

 

 
 



 

country would be the Population up the Sample 

All employees in an office would be the 
Population 

Out of all the employees, all managers in the 

office would be the Sample 

 

 

5) Define Hypothetical Population 

 

A population containing a finite number of individuals, members or units is a class. ... All the 400 

students of 10th class of particular school is an example of existent type of population and the 

population of heads and tails obtained by tossing a coin on infinite number of times is an example of 

hypothetical population. 

6) What Is Random Samplings 

 

Random sampling occurs if, at each stage of sampling, the selection process guarantees that all potential 

observations in the population have an equal chance of being included in the sample 

8) What is Sampling Distribution ? 

 

The sampling distribution of the mean refers to the probability distribution of means for all possible 

random samples of a given size from some population. 

9) What are the types of Sampling Distribution? 

 Sampling distribution of mean 

 Sampling distribution of proportion 

 T-distribution 

 

10) Define Sampling distribution of mean 

 

The most common type of sampling distribution is of the mean. It focuses on calculating the mean of 

every sample group chosen from the population and plotting the data points. The graph shows a normal 

distribution where the center is the mean of the sampling distribution, which represents the mean of the 

entire population. 

 
11) What is mean by Sampling distribution of proportion 

 

This sampling distribution focuses on proportions in a population. Samples are selected and their 

proportions are calculated. The mean of the sample proportions from each group represent the 

proportion of the entire population, 

 



 

12) Define T-distribution 

 

A T-distribution is a sampling distribution that involves a small population or one where not much is 

known about it. It is used to estimate the mean of the population and other statistics such as 

confidence intervals, statistical differences and linear regression. The T-distribution uses a t- score to 

evaluate data that wouldn't be appropriate for a normal distribution. 

 

The formula for t-score is: 

 
In the formula, "x" is the sample mean and "μ" is the population mean and signifies standard 

deviation. 

 
13) Define MEAN OF ALL THE SAMPLE MEAN 

 

The mean of the sampling distribution of the mean always equals the mean of the population. 

 

14) Standard Error Of The Mean 

 

The standard error of the mean equals the standard deviation of the population divided by the 

square root of the sample size 

15) What is the Special Type Of Standard Deviation 

 

You might find it helpful to think of the standard error of the mean as a rough measure of the average 

amount by which sample means deviate from the mean of the sampling distribution or from the 

population mean. 

16) What Is The Hypothesis Testing 

 

Hypothesis testing is a form of statistical inference that uses data from a sample to drawconclusions 

about a population parameter or a population probability distribution. First, a tentative assumption is 

made about the parameter or distribution. This assumption is called the null hypothesis and is denoted 

by H0. 

17) Hypothesized Sampling Distribution 

 

When you perform a hypothesis test of a single population mean μ using a normal distribution (often 

called a z-test), you take a simple random sample from the population. .... Then the binomial distribution 

of a sample (estimated) proportion can be approximated by the normal distribution with μ = p and 

σ=√pqn σ = p q n . 

18) Define Decision Rule 

 

A decision rule specifies precisely when H0 should be rejected (because the observed z qualifies as a 

rare outcome). There are many possible decision rules, as will be seen in Section 11.3. A very common 

t = [ x - μ ] / [ s / sqrt( n ) ] 



 

one, already introduced in Figure 10.3, specifies that H0 should be rejected if the observed z equals or is 

more positive than 1.96 or if the observed z equals or is more negative than –1.96. Conversely, H0 

should be retained if the observed z falls between ± 1.96. 

19) Define null hypothesis? 

 

The null hypothesis is a typical statistical theory which suggests that no statistical relationship and 

significance exists in a set of given single observed variable, between two sets of observed data and 

measured phenomena. 

20) What is Level of Significance 

 

Total area that is identified with rare outcomes. Often referred to as the level of significance ofthe 

statistical test, this proportion is symbolized by the Greek letter α (alpha) and discussed more thoroughly 

in Section 11.4. In the present example, the level of significance, α, equals 05. 

21) Define One-Tailed And Two-Tailed Tests 

 

Before a hypothesis test, if there is a concern that the true population mean differs from the 

hypothesized population mean only in a particular direction, use the appropriate one-tailed or directional 

test for extra sensitivity. Otherwise, use the more customary two-tailed or non directional test 

22) What is Two-Tailed Test with example 

 

Generally, the alternative hypothesis, H1, is the complement of the null hypothesis, H0. Under typical 

conditions, the form of H1 resembles that shown for the SAT example, namely, 

H1: µ ≠ 500 

 

This alternative hypothesis says that the null hypothesis should be rejected if the mean reading score for 

the population of local freshmen differs in either direction from the national average of 500. An 

observed z will qualify as a rare outcome if it deviates too far either below or above the national 

average. Panel A of Figure 11.2 shows rejection regions that are associated with both tails of the 

hypothesized sampling distribution. The corresponding decision rule, with its pair of critical z scores of 

±1.96, is referred to as a two-tailed or non directional test. 

 
23) what is One-Tailed Test (Lower Tail Critical) 

 

Now let’s assume that the research hypothesis for the investigation of SAT math scores was based on 

complaints from instructors about the poor preparation of local freshmen. Assume also that if the 

investigation supports these complaints, a remedial program will be instituted. Under these 



 

circumstances, the investigator might prefer a hypothesis test that is specially designed to detect only 

whether the population mean math score for all local freshmen is less than the national average. This 

alternative hypothesis reads: 

H1: µ ≤ 500 

 

24) What is One-Tailed Test (Upper Tail Critical) 

 

Panel C of Figure 11.2 illustrates a one-tailed or directional test with the upper tail critical. This one- 

tailed test is the mirror image of the previous test. Now the alternative hypothesis reads: 

H1: µ > 500 

and its critical z equals 1.65. This test is specially designed to detect only whether the populationmean 

math score for all local freshmen exceeds the national average. For example, the research hypothesis for 

this investigation might have been inspired by the possibility of eliminating an existing remedial math 

program if it can be demonstrated that, on the average, the SAT math scores of all local freshmen 

exceed the national average 

25) Define Consequences of Reducing Standard Error 

 

As can be seen by comparing Figure 11.5 and Figure 11.6, the reduction of the standard error 

from 2.5 to 1.5 has two important consequences: 

1. It shrinks the upper retention region back toward the hypothesized population mean of 100. 

 

2. It shrinks the entire true sampling distribution toward the true population mean of 103. 

 
26) Define Power curve 

 

A graph showing power as a function of some other variable; specifically a graph of the power output of 

a vehicle or aircraft against engine speed. 2 figurative Chiefly Business. The current thinking or trend.  

3Statistics. A graphical representation of the power function of a statistical test. 

 

27) For a one-tailed or directional test with the lower tail critical 

 

H0: µ ≥ SOME NUMBERS 

H1: µ ˂  SOME NUMBERS 

28) For a one-tailed or directional test with the upper tail critical, 

 

H0: µ ≤ SOME NUMBERS 

 

H1: µ ˃  SOME NUMBERS 



 

29) What are four possible outcomes for any hypothesis test: 

 

• If H0 really is true, it is a correct decision to retain the true H0. 

 

• If H0 really is true, it is a type I error to reject the true H0. 

 

• If H0 really is false, it is a type II error to retain the false H0. 

 

• If H0 really is false, it is a correct decision to reject the false H0. 

 
30) Define Point Estimate 

 

A point estimate for μ uses a single value to represent the unknown population mean. 

 
31) What is mean by confidence interval ( ci ) for µ 

 

A confidence interval for μ uses a range of values that, with a known degree of certainty, 

includes the unknown population mean. 

32) Define Effect Of Sample Size 

 

The larger the sample size, the smaller the standard error and, hence, the more precise (narrower) the 

confidence interval will be. Indeed, as the sample size grows larger, the standard error will approach zero 

and the confidence interval will shrink to a point estimate. Given this perspective, the sample size for a 

confidence interval, unlike that for a hypothesis test, never can be too large. 

PART B 

 

1) Explain population and samples. And difference? 

 
2) Describe random sampling? 

 
3) Explain sampling distribution and types? 

 
4) Describe null hypothesis test in detail? 

 
5) Explain in detail hypothesis testing and examples? 

 
6) Does the mean of SAT math score for all local freshman differ for all local average of 500? (ztest for 

population mean) 

7) Explain one tailed and two tailed test. 

 

8) Define estimation .Explain in detail about point estimation. 
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AD3491 FUNDAMENTALS OF DATA SCIENCE AND ANALYTICS 

UNIT IV Notes 

 
1) Define T-Test? 

Statistical method for the comparison of the mean of the two groups of the normally 

distributed sample(s). 

It is used when: 

 Population parameter (mean and standard deviation) is not known

 Sample size (number of observations) < 30

 
2) T-Test: (Explanation) 

Type of t-test. 

The T-test is mainly classified into 3 parts: 

 One sample

 Independent sample

 Paired sample

1. One Sample 

In one sample t-test, we compare the sample mean with the population mean. 

Mathematical Formula: 
 

 

 

 

 

 

 

 

 

 

 

 

 Region of rejection lies either on extreme left or extreme right of the distribution.

 In z-test, we use population standard deviation instead of sample standard deviation.

 
Example: 

Problem Statement: 

Marks of student are 10.5, 9, 7, 12, 8.5, 7.5, 6.5, 8, 11 and 9.5. 

Mean population score is 12 and standard deviation is 1.80. 

Is the mean value for student significantly differ from the mean population value. 

Solution: 

https://www.naukri.com/learning/articles/t-test/
https://www.naukri.com/learning/articles/t-test/
https://www.naukri.com/learning/articles/t-test/
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Mathematical Formula: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2. Independent (two-sample t-test): 

 
In this test, we compare the means of two different samples. 
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Is there any significant differnece between marks of males and females i.e. population means are 

different. 

 

Solution: 

Degree of Freedom: 

Degree of freedom is defined as the number of independent variables. 

It is given by: 

Note: There are two regions of rejection, one in either directions towards tail of each distribution. 

Let’s understand two-sample t-test by an example: 

Problem Statement: 

 
The marks of boys and girls are given: 

Boys: 12, 14, 10, 8, 16, 5, 3, 9, and 11 

Girls: 21, 18, 14, 20, 11, 19, 8, 12, 13, and 15 
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Firstly, we will calculate mean, standard deviation and degree of freedom for marks of boys and girls: 

 

 
3. Paired t-test: 

 
In this test, we compare the means of two related or same group at two different time. 

Mathematical Formula: 
 

 

 

 

 

 

 

 

 
Note: Degree of freedom is n-1. 

 
Let’s understand two-sample t-test by an example: 

 
Problem Statement: 

Blood pressure of 8 patients are before and after are 

recorded: Before: 180, 200, 230, 240, 170, 190, 200, and 165 

After: 140, 145, 150, 155, 120, 130, 140, and 130 

Is there any significant difference between BP reading before and 

after. Solution: 
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3) Define F-Test? 
 

An F-test is any statistical test in which the test statistic has an F-distribution under the null 

hypothesis. It is most often used when comparing statistical models that have been fitted to a 

data set, in order to identify the model that best fits the population from which the data were 

sampled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Conclusion: 

 
T-test is a statistically significant test for the hypothesis testing (null and alternative 

hypotheses) when the sample size is small and the population parameter (mean and variance) 

is unknown. 
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4) F-Test: (Explanation) 

 

F-Test is any test that utilizes the F-Distribution table to fulfil its purpose (for eg: ANOVA). 

It compares the ratio of the variances of two populations and determines if they are statistically 

similar or not. 

We can use this test when: 

 The population is normally distributed.

 The samples are taken at random and are independent samples.

Formulas Used 
 
 

 

where, 

Fcalc  = Critical F-value. 
σ1

2  & σ2
2  = variance of the two samples. 

 
 
 

where, 

df = Degrees of freedom of the sample. 
nS = Sample size. 

 
Steps involved: 
Step 1: Use Standard deviation (σ) and find variance (σ2) of the data. (if not already 

given) 
Step 2: Determine the null and alternate hypothesis. 

 H0 -> no difference in variances.
 Ha -> difference in variances.
Step 3: Find Fcalc using Eq-1. 

 

it makes calculations easier. 
Step 4: Find the degrees of freedom of the two samples. 
Step 5: Find Ftable value using d1 and d2 obtained in Step-4 from the F-distribution 
table. (link here). Take learning rate, α = 0.05 (if not given) 
Looking up the F-distribution table: 
In the F-Distribution table, refer the table as per the given value of α in the question. 
 d1 (Across) = df of the sample with numerator variance. (larger)
 d2 (Below) = df of the sample with denominator variance. (smaller) 
Consider the F-Distribution table given below,

While performing One-Tailed F-Test. 

GIVEN : 
α = 0.05 

NOTE : While calculating Fcalc, divide the larger variance with small variance as 
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d1 = 2 
d2 = 3 

 
 

Step 1: 

 σ1
2 = (10.47)2 = 109.63

 σ2
2 = (8.12)2 = 65.99

Step 2: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Then, Ftable = 9.55 
Step 6: Interpret the results using Fcalc and Ftable. 
Interpreting the results: 
 

If Fcalc < Ftable : 
Cannot reject null hypothesis. 
∴ Variance of two populations are similar. 

 
If Fcalc > Ftable : 

Reject null hypothesis. 
∴ Variance of two populations are not similar. 

 
Example Problem (Step by Step) 

Consider the following example, 

Conduct a two-tailed F-Test on the following samples: 
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 H0: no difference in variances.
 Ha: difference in variances.
Step 3: 
Fcalc = (109.63 / 65.99) = 1.66 
Step 4: 
d1 = (n1 – 1) = (41 – 1) = 40 
d2 = (n2 — 1) = (21 – 1) = 20 

 
Step 5 - Using d1  = 40 and d2  = 20 in the F-Distribution table. 
Take α = 0.05 as it's not given. 

Since it is a two-tailed F-test, 
α = 0.05/2 
= 0.025 

Therefore, Ftable  = 2.287 
 

Step 6 - Since Fcalc  < Ftable  (1.66 < 2.287): 
We cannot reject null hypothesis. 
∴ Variance of two populations are similar to each other. 

 

F-Test is the most often used when comparing statistical models that have been fitted to a data 

set to identify the model that best fits the population. Researchers usually use it when they 

want to test whether two independent samples have been drawn from a normal population with 

the same variability. 

 

5) What is analysis of variance? 

 

Analysis of variance is a collection of statistical models and their associated estimation 

procedures used to analyze the differences among means. ANOVA was developed by the 

statistician Ronald Fisher 

6) Define effect size estimation. 
 

Effect size estimates provide important information about the impact of a treatment on the 

outcome of interest or on the association between variables. • Effect size estimates provide a 

common metric to compare the direction and strength of the relationship between variables 

across studies. 

7) What is mean by multiple comparisons, multiplicity or multiple testing. 

 
The multiple comparisons, multiplicity or multiple testing problem occurs when one considers 

a set of statistical inferences simultaneously or infers a subset of parameters selected based on 

the observed values. The more inferences are made, the more likely erroneous inferences 

become 
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8) Define ANOVA. 

 
Analysis of variance (ANOVA) is an analysis tool used in statistics that splits an observed 

aggregate variability found inside a data set into two parts: systematic factors and random 

factors. The systematic factors have a statistical influence on the given data set, while the 

random factors do not. Analysts use the ANOVA test to determine the influence that 

independent variables have on the dependent variable in a regression study. 

9) The Formula for ANOVA is: 
 

 

 

 

 

 

 

 

 
 

10) One-Way ANOVA vs. Two-Way ANOVA: 

 

There are two main types of analysis of variance: one-way (or unidirectional) and two- 

way (bidirectional). One-way or two-way refers to the number of independent variables 

in your analysis of variance test. A one-way ANOVA evaluates the impact of a sole 

factor on a sole response variable. It determines whether the observed differences 

between the means of independent (unrelated) groups are explainable by chance alone, or 

whether there are any statistically significant differences between groups. 

 

A two-way ANOVA is an extension of the one-way ANOVA. With a one-way, you have 

one independent variable affecting a dependent variable. With a two-way ANOVA, there 

are two independents. For example, a two-way ANOVA allows a company to compare 

worker productivity based on two independent variables, such as department and gender. 

It is utilized to observe the interaction between the two factors. It tests the effect of two 

factors at the same time. 

 

A three-way ANOVA, also known as three-factor ANOVA, is a statistical means of 

determining the effect of three factors on an outcome. 

 
11) Mention a two-factor factorial design. 

A two-factor factorial design is an experimental design in which data is collected for all 

possible combinations of the levels of the two factors of interest. If equal sample sizes are 

taken for each of the possible factor combinations then the design is a balanced two-factor 

factorial design. 

12) Define statistical test in F-test. 
 

An F-test is any statistical test in which the test statistic has an F-distribution under the null 

hypothesis. It is most often used when comparing statistical models that have been fitted to a 

https://www.investopedia.com/terms/t/three-way-anova.asp
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data set, in order to identify the model that best fits the population from which the data were 

sampled. 

13) What are the two- way analyses of variance? 

 

The two-way analysis of variance is an extension of the one-way ANOVA that examines the 

influence of two different categorical independent variables on one continuous dependent 

variable. 

14) What are the types of ANOVA? 
 

There are two main types of ANOVA: one-way (or unidirectional) and two-way. There also 

variations of ANOVA. For example, MANOVA (multivariate ANOVA) differs from 

ANOVA as the former tests for multiple dependent variables simultaneously while the latter 

assesses only one dependent variable at a time. 

15) Define chi-square test. 

 
The Chi-Square test is a statistical procedure used by researchers to examine the differences 

between categorical variables in the same population. 

 
For example, imagine that a research group is interested in whether or not education level and 

marital status are related for all people in the U.S. 

16) What Does the Analysis of Variance Reveal? 

 

The ANOVA test is the initial step in analyzing factors that affect a given data set. Once the 

test is finished, an analyst performs additional testing on the methodical factors that 

measurably contribute to the data set's inconsistency. The analyst utilizes the ANOVA test 

results in an f- test to generate additional data that aligns with the proposed regression models. 

 

The ANOVA test allows a comparison of more than two groups at the same time to 

determinewhether a relationship exists between them. The result of the ANOVA formula, the 

F statistic (also called the F-ratio), allows for the analysis of multiple groups of data to 

determine the variability between samples and within samples. 

 

If no real difference exists between the tested groups, which is called the null hypothesis, the 

result of the ANOVA's F-ratio statistic will be close to 1. The distribution of all possible 

values of the F statistic is the F-distribution. This is actually a group of distribution functions, 

with two characteristic numbers, called the numerator degrees of freedom and the 

denominator degrees offreedom. 

 

 
 

17) How to Use ANOVA? 

https://www.investopedia.com/terms/r/regression.asp
https://www.investopedia.com/terms/n/null_hypothesis.asp
https://www.investopedia.com/terms/d/degrees-of-freedom.asp
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A researcher might, for example, test students from multiple colleges to see if students 

from one of the colleges consistently outperform students from the other colleges. In a 

business application, an R&D researcher might test two different processes of creating a 

product to see if one process is better than the other in terms of cost efficiency. 

 

The type of ANOVA test used depends on a number of factors. It is applied when data needs 

to be experimental. Analysis of variance is employed if there is no access to statistical 

software resulting in computing ANOVA by hand. It is simple to use and best suited for 

small samples. With many experimental designs, the sample sizes have to be the same for the 

various factor level combinations. 

 

ANOVA is helpful for testing three or more variables. It is similar to multiple two-sample t- 

tests. However, it results in fewer type I errors and is appropriate for a range of issues. 

ANOVA groups differences by comparing the means of each group and includes spreading 

out the variance into diverse sources. It is employed with subjects, test groups, between 

groups and within groups. 

 
18) What is the Analysis of Variance in Other Applications 

 

In addition to its applications in the finance industry, ANOVA is also used in a wide variety 

of contexts and applications to test hypotheses in reviewing clinical trial data.For example, to 

compare the effects of different treatment protocols on patient outcomes; in social science 

research (for instance to assess the effects of gender and class on specified variables), in 

software engineering (for instance to evaluate database management systems), in 

manufacturing (to assess product and process quality metrics), and industrial design among 

other fields. 

 
19) What is a Test? 

In technical analysis and trading, a test is when a stock’s price approaches an established 

support or resistance level set by the market. If the stock stays within the support and 

resistance levels, the test passes. However, if the stock price reaches new lows and/or new 

highs, the test fails. In other words, for technical analysis, price levels are tested to see if 

patterns or signals are accurate. 

 

A test may also refer to one or more statistical techniques used to evaluate differences or 

similarities between estimated values from models or variables found in data. Examples 

includethe t-test and z-test 

 
20) Define Range-Bound Market Test. 

When a stock is range-bound, price frequently tests the trading range’s upper and lower 

boundaries. If traders are using a strategy that buys support and sells resistance, they should 

wait for several tests of these boundaries to confirm price respects them before entering a 

trade. 

 

Once in a position, traders should place a stop-loss order in case the next test of support or 

resistance fails. 

https://www.investopedia.com/terms/t/t-test.asp
https://www.investopedia.com/terms/t/t-test.asp
https://www.investopedia.com/terms/t/type_1_error.asp
https://www.investopedia.com/trading/support-and-resistance-basics/
https://www.investopedia.com/terms/s/statistics.asp
https://www.investopedia.com/terms/t/t-test.asp
https://www.investopedia.com/terms/z/z-test.asp
https://www.investopedia.com/terms/r/rangeboundtrading.asp
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21) What is the Trending Market Test? 

In an up-trending market, previous resistance becomes support, while in a down-trending 

market, past support becomes resistance. Once price breaks out to a new high or low, it often 

retraces to test these levels before resuming in the direction of the trend. Momentumtraders 

can use the test of a previous swing high or swing low to enter a position at a morefavorable 

price than if they would have chased the initial breakout. 

 

A stop-loss order should be placed directly below the test area to close the trade if the trend 

unexpectedly reverses. 

 
22) Define Statistical Tests. 

Inferential statistics uses the properties of data to test hypotheses and draw conclusions. 

Hypothesis testing allows one to test an idea using a data sample with regard to a population 

parameter. The methodology employed by the analyst depends on the nature of the data used 

and the reason for the analysis. In particular, one seeks to reject the null hypothesis, or the 

notion that one or more random variables have no effect on another. If this can be rejected, 

the variables are likely to be associated with one another 

 
23) What is Alpha Risk? 

Alpha risk is the risk that in a statistical test a null hypothesis will be rejected when it is 

actuallytrue. This is also known as a type I error, or a false positive. The term "risk" refers to 

the chance or likelihood of making an incorrect decision. The primary determinant of the 

amount of alpha risk is the sample size used for the test. Specifically, the larger the sample 

tested, the lower the alpha risk becomes. 

 

Alpha risk can be contrasted with beta risk, or the risk of committing a type II error (i.e., a 

falsenegative). 

 

Alpha risk, in this context, is unrelated to the investment risk associated with an actively 

managed portfolio that seeks alpha, or excess returns above the market. 

 
24) What is Range-Bound Trading? 

 

Range-bound trading is a trading strategy that seeks to identify and capitalize on securities, 

like stocks, trading in price channels. After finding major support and resistance levels and 

connecting them with horizontal trendlines, a trader can buy a security at the lower trendline 

support (bottom of the channel) and sell it at the upper trendline resistance (top of the 

channel). 

 

25) What is a One-Tailed Test? 

 

A one-tailed test is a statistical test in which the critical area of a distribution is one-sided so 

that it is either greater than or less than a certain value, but not both. If the sample being 

testedfalls into the one-sided critical area, the alternative hypothesis will be accepted instead 

of the null hypothesis. 

https://www.investopedia.com/terms/r/retracement.asp
https://www.investopedia.com/terms/s/stop-lossorder.asp
https://www.investopedia.com/terms/h/hypothesistesting.asp
https://www.investopedia.com/terms/s/sample.asp
https://www.investopedia.com/terms/n/null_hypothesis.asp
https://www.investopedia.com/terms/r/random-variable.asp
https://www.investopedia.com/terms/n/null_hypothesis.asp
https://www.investopedia.com/terms/t/type_1_error.asp
https://www.investopedia.com/terms/b/beta-risk.asp
https://www.investopedia.com/terms/t/type-ii-error.asp
https://www.investopedia.com/terms/a/alpha.asp
https://www.investopedia.com/terms/c/channel.asp
https://www.investopedia.com/terms/t/trendline.asp


  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

AD3491 FUNDAMENTALS OF DATA SCIENCE AND ANALYTICS 

UNIT V Notes 

 

PART A 

 

1. What Is Predictive Analytics? 

 

The term predictive analytics refers to the use of statistics and modeling techniques to make 

predictions about future outcomes and performance. Predictive analytics looks at current and 

historical data patterns to determine if those patterns are likely to emerge again. This allows 

businesses and investors to adjust where they use their resources to take advantage of possible 

future events. Predictive analysis can also be used to improve operational efficiencies and 

reduce risk 

 

2. Understanding Predictive Analytics. 

 

Predictive analytics is a form of technology that makes predictions about certain unknowns in 

the future. It draws on a series of techniques to make these determinations, including artificial 

intelligence (AI), data mining, machine learning, modeling, and statistics.3 For instance, data 

mining involves the analysis of large sets of data to detect patterns from it. Text analysis does 

the same, except for large blocks of text 

 

3. Predictive models are used for all kinds of applications, including: 

 

 Weather forecasts 

 Creating video games 

 Translating voice to text for mobile phone messaging 

 Customer service 

 Investment portfolio development 

 

All of these applications use descriptive statistical models of existing data to make predictions 

about future data 

 

4. What is mean by Forecasting? 

Forecasting is essential in manufacturing because it ensures the optimal utilization of resources 

in a supply chain. Critical spokes of the supply chain wheel, whether it is inventory 

management or the shop floor, require accurate forecasts for functioning. 

Predictive modelling is often used to clean and optimize the quality of data used for such 

forecasts. Modelling ensures that more data can be ingested by the system, including from 

customer-facing operations, to ensure a more accurate forecast. 

 

5. Define Credit. 

Credit scoring makes extensive use of predictive analytics. When a consumer or business 

applies for credit, data on the applicant's credit history and the credit record of borrowers with 

similar characteristics are used to predict the risk that the applicant might fail to perform on any 

credit extended. 

 

6. Define Underwriting. 

Data and predictive analytics play an important role in underwriting. Insurance companies 

examine policy applicants to determine the likelihood of having to pay out for a 

https://www.investopedia.com/terms/s/statistics.asp
https://www.investopedia.com/terms/o/operationalefficiency.asp
https://www.investopedia.com/terms/r/risk.asp
https://www.investopedia.com/alternative-investments-4427781
https://www.investopedia.com/alternative-investments-4427781
https://www.investopedia.com/terms/d/datamining.asp
https://www.investopedia.com/terms/p/predictive-modeling.asp
https://www.investopedia.com/terms/s/supplychain.asp
https://www.investopedia.com/terms/c/credit_scoring.asp


 
 

future claim based on the current risk pool of similar policyholders, as well as past events that 

have resulted in pay-outs. Predictive models that consider characteristics in comparison to data 

about past policyholders and claims are routinely used by actuaries. 

 

7. What is mean by Marketing? 

Individuals who work in this field look at how consumers have reacted to the overall economy 

when planning on a new campaign. They can use these shifts in demographics to determine if 

the current mix of products will entice consumers to make a purchase. 

 

Active traders, meanwhile, look at a variety of metrics based on past events when deciding 

whether to buy or sell a security. Moving averages, bands, and breakpoints are based on 

historical data and are used to forecast future price movements 

 

8. Predictive Analytics vs. Machine Learning 

 

A common misconception is that predictive analytics and machine learning are the same things. 

Predictive analytics help us understand possible future occurrences by analyzing the past. At its 

core, predictive analytics includes a series of statistical techniques (including machine learning, 

predictive modelling, and data mining) and uses statistics (both historical and current) to 

estimate, or predict, future outcomes 

 

9. What is the Decision Trees? 

If you want to understand what leads to someone's decisions, then you may find decision trees 

useful. This type of model places data into different sections based on certain variables, such as 

price or market capitalization. Just as the name implies, it looks like a tree with individual 

branches and leaves. Branches indicate the choices available while individual leaves represent a 

particular decision. 

 

Decision trees are the simplest models because they're easy to understand and dissect. They're 

also very useful when you need to make a decision in a short period of time 

10. Define Regression. 

This is the model that is used the most in statistical analysis. Use it when you want to determine 

patterns in large sets of data and when there's a linear relationship between the inputs. This 

method works by figuring out a formula, which represents the relationship between all the 

inputs found in the dataset. For example, you can use regression to figure out how price and 

other key factors can shape the performance of a security 

 

11. Define Neural Networks. 

Neural networks were developed as a form of predictive analytics by imitating the way the 

human brain works. This model can deal with complex data relationships using artificial 

intelligence and pattern recognition. Use it if you have several hurdles that you need to 

overcome like when you have too much data on hand, when you don't have the formula you 

need to help you find a relationship between the inputs and outputs in your dataset, or when you 

need to make predictions rather than come up with explanations. 

 

12. What are the Benefits of Predictive Analytics? 

 

There are numerous benefits to using predictive analysis. As mentioned above, using this type 

of analysis can help entities when you need to make predictions about outcomes when there are 

no other (and obvious) answers available.9 

https://www.investopedia.com/terms/i/insurance_claim.asp
https://www.investopedia.com/terms/a/actuarial-science.asp
https://www.investopedia.com/terms/b/breakpoint.asp
https://www.investopedia.com/terms/m/machine-learning.asp
https://www.investopedia.com/terms/m/marketcapitalization.asp
https://www.investopedia.com/ask/answers/101314/what-difference-between-cost-and-price.asp
https://www.investopedia.com/terms/s/security.asp


 
 

Investors, financial professionals, and business leaders are able to use models to help reduce 

risk. For instance, an investor and their advisor can use certain models to help craft an 

investment portfolio with minimal risk to the investor by taking certain factors into 

consideration, such as age, capital, and goals.9
 

 

There is a significant impact to cost reduction when models are used. Businesses can determine 

the likelihood of success or failure of a product before it launches. Or they can set aside capital 

for production improvements by using predictive techniques before the manufacturing process 

begins 

 

13. Criticism of Predictive Analytics. 

 

The use of predictive analytics has been criticized and, in some cases, legally restricted due to 

perceived inequities in its outcomes. Most commonly, this involves predictive models that 

result in statistical discrimination against racial or ethnic groups in areas such as credit scoring, 

home lending, employment, or risk of criminal behaviour. 

 

A famous example of this is the (now illegal) practice of redlining in home lending by banks. 

Regardless of whether the predictions drawn from the use of such analytics are accurate, their 

use is generally frowned upon, and data that explicitly include information such as a person's 

race are now often excluded from predictive analytics. 

 

14. How Does Netflix Use Predictive Analytics? 

Data collection is very important to a company like Netflix. It collects data from its customers 

based on their behaviour and past viewing patterns. It uses information and makes predictions 

based to make recommendations based on their preferences. This is the basis behind the 

"Because you watched..." lists you'll find on your subscription. 

 

15. What Is Data Analytics? 

 

Data analytics is the science of analysing raw data to make conclusions about that information. 

Many of the techniques and processes of data analytics have been automated into mechanical 

processes and algorithms that work over raw data for human consumption 

 

16. What are the various steps of Data Analysis? 

The process involved in data analysis involves several different steps: 

 

1. The first step is to determine the data requirements or how the data is grouped. Data may 

be separated by age, demographic, income, or gender. Data values may be numerical or 

be divided by category. 

2. The second step in data analytics is the process of collecting it. This can be done through 

a variety of sources such as computers, online sources, cameras, environmental sources, 

or through personnel. 

3. Once the data is collected, it must be organized so it can be analyzed. This may take 

place on a spreadsheet or other form of software that can take statistical data. 

4. The data is then cleaned up before analysis. This means it is scrubbed and checked to 

ensure there is no duplication or error, and that it is not incomplete. This step helps 

correct any errors before it goes on to a data analyst to be analyzed 

https://www.investopedia.com/terms/i/investor.asp
https://www.investopedia.com/terms/c/capital.asp
https://www.investopedia.com/terms/m/manufacturing.asp
https://www.investopedia.com/terms/r/redlining.asp
https://www.investopedia.com/terms/a/algorithm.asp


 
 

PART B 

 

1. How do you solve the least square problem in Python? What is least square method in Python? 

2. What is the goodness-of-fit test? 

 

Employers want to know which days of the week employees are absent in a five-day work week. 

Most employers would like to believe that employees are absent equally during the week. 

Suppose a random sample of 60 managers were asked on which day of the week they had the 

highest number of employee absences. The results were distributed as in the table below. For the 

population of employees, do the days for the highest number of absences occur with equal 

frequencies during a five-day work week? Test at a 5% significance level. 

 

Day of the Week Employees were Most Absent 
 

 
Monday Tuesday Wednesday 

 

 

 

 

Number of Absences 15 12 9 

3. One study indicates that the number of televisions that American families have is distributed 

(this is the given distribution for the American population) as in the table. 
 

 
Percent 

 
10 

 
1 16 

 
2 55 

 
3 11 

 
4+ 8 

 
 

The table contains expected (E) percents. 

 

A random sample of 600 families in the far western United States resulted in the data in this 

table. 
 

 
Frequency 

 

 
0 66 

 

Number of Televisions 

 

Number of Televisions 



 
 

 

Frequency 

 
1 119 

 
2 340 

 
3 60 

 

4+ 
15 

Total = 600 
 
 
 

 
The table contains observed (O) frequency values. 

 

At the 1% significance level, does it appear that the distribution “number of televisions” of far 

western United States families is different from the distribution for the American population 

as a whole? 

 
4. Explain in detail about time series analysis with example. 

 

5. Describe Regression using Stats Models. 

 

6. Explain multiple regression with an example. 

 

7. What is the nonlinear relationships and types .Difference between linear and non linear 

relationship 

 

8. Describe logistic regression in detail. 

 

9. Explain in detail serial correlation and autocorrelation. 

 

https://www.investopedia.com/terms/s/serial- 

correlation.asp#:~:text=Serial%20correlation%20is%20the%20relationship,it%20may%20not%20be% 

20random. 

 
https://corporatefinanceinstitute.com/resources/data-science/autocorrelation/ 

 
 

10) Describe in detail Introduction to survival analysis. 

 

Number of Televisions 

http://www.investopedia.com/terms/s/serial-
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