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UNIT – I 

Introduction to Statistics 

Statistics is a mathematical science that includes methods for collecting, organizing, analyzing 

and visualizing data in such a way that meaningful conclusions can be drawn. 

Statistics is also a field of study that summarizes the data, interpret the data making decisions 

based on the data. 

Statistics is composed of two broad categories: 

1. Descriptive Statistics 

2. Inferential Statistics 

 

1. Descriptive Statistics 

Descriptive statistics describes the characteristics or properties of the data. It helps to 

summarize the data in a meaningful data in a meaningful way. It allows important patterns to 

emerge from the data. Data summarization techniques are used to identify the properties of 

data. It is helpful in understanding the distribution of data. They do not involve in 

generalizing beyond the data. 

 

Two types of descriptive statistics 

1. Measures of Central Tendency: (Mean , Median , Mode) 

2. Measures of data spread or dispersion (range, quartiles, variance and standard deviation) 

 

Measures of Central Tendency: (Mean , Median , Mode) 

A measure of central tendency is a single value that attempts to describe a set of data by 

identifying the central position within that set of data. The mean, median and mode are all valid 

measures of central tendency. 

Mean (Arithmetic) 

The mean (or average) is the most popular and well known measure of central tendency. It can 

be used with both discrete and continuous data, although its use is most often with continuous 

data. 

The mean is equal to the sum of all the values in the data set divided by the number of values in 

the data set. So, if we have values in a data set and they have values x1,x2,…xn, the sample 

mean, usually denoted by ̿𝒙 . 

https://statistics.laerd.com/statistical-guides/measures-of-spread-standard-deviation.php
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𝑥̿ ̿= (x1,x2,…xn )/ n. 

An important property of the mean is that it includes every value in the data set as part of the 

calculation. In addition, the mean is the only measure of central tendency where the sum of the 

deviations of each value from the mean is always zero. 

Median: 

The median is the middlescore for a set of data that has been arranged in order of magnitude. The 

median is less affected by outliers and skewed data. It is a holistic measure. It is easy method of 

approximation of median value of a large data set. 

 

 

Mode 

The mode is the most frequent score in our data set. The mode is used for categorical data where 

we want to know which is the most common category occurring in the population. There are 

possibilities for the greatest frequency to correspond to different values. This results in more than 

one,two or more modes in a dataset. They are called as unimodal, bimodal and multimodal 

datasets. If each data occurs only once then the mode is equal to zero. 

Unimodal frequency curve with symmetric data distribution , the mean median and mode are all 

the same. 

In real applications the data is not symmetrical and they are asymmetric.It might be positively 

skewed or negatively skewed. If positively skewed then mode is smaller than median and in 

negatively skewed the mode occurs at a value greater than the median. 
 

 

 

 

Measures of spread: 

Measures of spread are the ways of summarizing a group of data by describing how scores are 

spread out. To describe this spread, a number of statistics are available to us, including the range, 

quartiles, absolute deviation, variance and standard deviation. 

https://statistics.laerd.com/statistical-guides/measures-of-spread-standard-deviation.php
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• The degree to which numerical data tend to spread is called the dispersion, or variance of 

the data. The common measures of data dispersion: Range, Quartiles, Outliers, and 

Boxplots. 

Range : Range of the set is the difference between the largest (max()) and smallest (min()) 

values.  Ex:Step  1: Sort  the  numbers  in  order,  from  smallest  to  largest: 

7, 10, 21, 33, 43, 45, 45, 65, 67, 87, 98, 99 

Step 2: Subtract the smallest number in the set from the largest number in the set: 

99 – 7 = 92 

The range is 92 

Quartiles :Percentile : kth percentile of a set of data in numerical order is the value xi having 

the property that k percent of the data entries lie at or below xi 

• The first quartile (Q1) is the 25th percentile; 

• The third quartile (Q3) is the 75th percentile 

• The distance between the first and third quartiles is the range covered by the middle half 

of the data. 

• Interquartile range (IQR) and is defined as IQR = Q3 - Q1. 

• Outliers is to single out values falling at least 1.5 *IQR above the third quartile or below 

the first quartile. 

• Five-number summary: median, the quartiles Q1 and Q3, and the smallest and largest 

individual observations comprise the five number summary: Minimum; Q1; Median; Q3; 

Maximum 

 

Example : Quartiles 

 

• Start with the following data set: 

• 1, 2, 2, 3, 4, 6, 6, 7, 7, 7, 8, 11, 12, 15, 15, 15, 17, 17, 18, 20 

• There are a total of twenty data points in the set. There is an even number of data values, 

hence the median is the mean of the tenth and eleventh values. 

• the median is: (7 + 8)/2 = 7.5. 

• The median of the first half of the set is found between the fifth and sixth values of: 

• 1, 2, 2, 3, 4, 6, 6, 7, 7, 7 

• Thus the first quartile is found to equal Q1 = (4 + 6)/2 = 5 

• To find the third quartile, examine the top half of the original data set. The median of 

• 8, 11, 12, 15, 15, 15, 17, 17, 18, 20 

• is (15 + 15)/2 = 15. Thus the third quartile Q3 = 15. 

A small interquartile range indicates data that is clumped about the median. A larger 

interquartile range shows that the data is more spread out 
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Variance and Standard Deviation 
 

 

 

Inferential Statistics – Definition and Types 

Inferential statistics is generally used when the user needs to make a conclusion about the whole 

population at hand, and this is done using the various types of tests available. It is a technique 

which is used to understand trends and draw the required conclusions about a large population by 

taking and analyzing a sample from it. Descriptive statistics, on the other hand, is only about the 

smaller sized data set at hand – it usually does not involve large populations. Using variables and 

the relationships between them from the sample, we will be able to make generalizations and 

predict other relationships within the whole population, regardless of how large it is. 

With inferential statistics, data is taken from samples and generalizations are made about 

a population.Inferential statistics use statistical models to compare sample data to other samples 

or to previous research. 

 

There are two main areas of inferential statistics: 

 

1. Estimating parameters: 

This means taking a statistic from the sample data (for example the sample mean) and using it to 

infer about a population parameter (i.e. the population mean).There may be sampling variations 

because of chance fluctuations, variations in sampling techniques, and other sampling errors. 

Estimation about population characteristics may be influenced by such factors. Therefore, in 

estimation the important point is that to what extent our estimate is close to the true value. 

Characteristics of Good Estimator: A good statistical estimator should have the following 

characteristics, (i) Unbiased (ii) Consistent (iii) Accuracy 

i) Unbiased 

An unbiased estimator is one in which, if we were to obtain an infinite number ofrandom 

samples of a certain size, the mean of the statistic would be equal to theparameter. The sample 

https://www.statisticshowto.datasciencecentral.com/sample/
https://www.statisticshowto.datasciencecentral.com/what-is-a-population/
https://www.statisticshowto.datasciencecentral.com/statistic/
https://www.statisticshowto.datasciencecentral.com/sample-mean/
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mean, ( x ) is an unbiased estimate of population mean (μ)because if we look at possible random 

samples of size N from a population, thenmean of the sample would be equal to μ. 

ii) Consistent 

A consistent estimator is one that as the sample size increased, the probability thatestimate has a 

value close to the parameter also increased. Because it is a consistentestimator, a sample mean 

based on 20 scores has a greater probability of beingcloser to (μ) than does a sample mean based 

upon only 5 scores 

iii) Accuracy 

The sample mean is an unbiased and consistent estimator of population mean (μ).But we should 

not over look the fact that an estimate is just a rough or approximatecalculation. It is unlikely in 

any estimate that ( x ) will be exactly equal to populationmean (μ). Whether or not x is a good 

estimate of (μ) depends upon the representativeness of sample, the sample size, and the 

variability of scores in the population. 

 

2. Hypothesis tests. This is where sample data can be used to answer research questions. For 

example, we might be interested in knowing if a new cancer drug is effective. Or if breakfast 

helps children perform better in schools. 

 

Inferential statistics is closely tied to the logic of hypothesis testing. We hypothesize that this 

value characterise the population of observations. The question is whether that hypothesis is 

reasonable evidence from the sample. Sometimes hypothesis testing is referred to as statistical 

decision-making process. In day-to-day situations we are required to take decisions about the 

population on the basis of sample information. 

 

Statement of Hypothesis 

A statistical hypothesis is defined as a statement, which may or may not be true about the 

population parameter or about the probability distribution of the parameter that we wish to 

validate on the basis of sample information. Most times, experiments are performed with 

random samples instead of the entire population and inferences drawn from the observed results 

are then generalised over to the entire population. But before drawing inferences about the 

population it should be always kept in mind that the observed results might have come due to 

chance factor. In order to have an accurate or more precise inference, the chance factor should be 

ruled out. 

Null Hypothesis 

The probability of chance occurrence of the observed results is examined by the null hypothesis 

(H0 ). Null hypothesis is a statement of no differences. The other way to state null hypothesis is 

that the two samples came from the same population. Here, we assume that population is 

normally distributed and both the groups have equal means and standard deviations. 

Since the null hypothesis is a testable proposition, there is counter proposition to it known as 

alternative hypothesis and denoted by H1 . In contrast to null hypothesis, the alternative 

hypothesis (H1) proposes that 

https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/hypothesis-testing/
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i) the two samples belong to two different populations, 

ii) their means are estimates of two different parametric means of the respective 

population, and 

iii) there is a significant difference between their sample means. 
The alternative hypothesis (H1 ) is not directly tested statistically; rather its acceptance or 

rejection is determined by the rejection or retention of the null hypothesis. The probability ‘p’ of 

the null hypothesis being correct is assessed by a statistical test. If probability ‘p’ is too low, H0 

is rejected and H1 is accepted. 

It is inferred that the observed difference is significant. If probability ‘p’ is high, H0 is accepted 

and it is inferred that the difference is due to the chance factor and not due to the variable factor. 

Level of Significance 

The level of significance is defined as the probability of rejecting a null hypothesis by the test 

when it is really true, which is denoted as α. That is, P (Type I error) = α. 

 

Confidence level: 

Confidence level refers to the possibility of a parameter that lies within a specified range of 

values, which is denoted as c. Moreover, the confidence level is connected with the level of 

significance. The relationship between level of significance and the confidence level is c=1−α. 

The common level of significance and the corresponding confidence level are given below: 

 

• The level of significance 0.10 is related to the 90% confidence level. 

• The level of significance 0.05 is related to the 95% confidence level. 

• The level of significance 0.01 is related to the 99% confidence level. 

The rejection rule is as follows: 

Rejection region: 

The rejection region is the values of test statistic for which the null hypothesis is rejected. 

 

Non rejection region: 

The set of all possible values for which the null hypothesis is not rejected is called the rejection 

region. 

The rejection region for two-tailed test is shown below: 
 

The rejection region for one-tailed test is given below: 
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 In the left-tailed test, the rejection region is shaded in left side. 

 In the right-tailed test, the rejection region is shaded in right side. 

 

One-tail and Two-tail Test 

Depending upon the statement in alternative hypothesis (H1 ), either a one-tail or twotail test is 

chosen for knowing the statistical significance. A one-tail test is a directional test. It is 

formulated to find the significance of both the magnitude and the direction (algebraic sign) of the 

observed difference between two statistics. Thus, in two-tailed tests researcher is interested in 

testing whether one sample mean is significantly higher (alternatively lower) than the other 

sample mean. 

 

Types of Inferential Statistics Tests 

There are many tests in this field, of which some of the most important are mentioned below. 

 

1. Linear Regression Analysis 

In this test, a linear algorithm is used to understand the relationship between two variables from 

the data set. One of those variables is the dependent variable, while there can be one or more 

independent variables used. In simpler terms, we try to predict the value of the dependent 

variable based on the available values of the independent variables. This is usually represented 

by using a scatter plot, although we can also use other types of graphs too. 

2. Analysis of Variance 

This is another statistical method which is extremely popular in data science. It is used to test and 

analyse the differences between two or more means from the data set. The significant differences 

between the means are obtained, using this test. 

 

3. Analysis of Co-variance 

This is only a development on the Analysis of Variance method and involves the inclusion of a 

continuous co-variance in the calculations. A co-variate is an independent variable which is 

continuous, and is used as regression variables. This method is used extensively in statistical 

modelling, in order to study the differences present between the average values of dependent 

variables. 

 

4. Statistical Significance (T-Test) 

A relatively simple test in inferential statistics, this is used to compare the means of two groups 

and understand if they are different from each other. The order of difference, or how significant 

the differences are can be obtained from this. 

5. Correlation Analysis 
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Another extremely useful test, this is used to understand the extent to which two variables are 

dependent on each other. The strength of any relationship, if they exist, between the two 

variables can be obtained from this. You will be able to understand whether the variables have a 

strong correlation or a weak one. The correlation can also be negative or positive, depending 

upon the variables. A negative correlation means that the value of one variable decreases while 

the value of the other increases and positive correlation means that the value both variables 

decrease or increase simultaneously. 

 

Differences between Descriptive and Inferential Statistics 

 

Descriptive Statistics Inferential Statistics 

Concerned with describing the target 

population 

Make inferences from the sample and 

generalize them to the population 

Organise, analyse, present the data in a 

meaningful way 

Compare, tests and predicts future outcomes 

The analysed results are in the form of graphs, 

charts etc 

The analysed results are the probability scores 

Describes the data which is already known Tries to make conclusions about the population 

beyond the data available 

Tools: Measures of central tendency and 

measures of spread 

Tools: Hypothesis tests, analysis of variance 

etc 

 

Random Variables 

A random variable, X, is a variable whose possible values are numerical outcomes of a random 

phenomenon. There are two types of random variables, discrete and continuous. 

 

Example of Random variable 

 

- A person’s blood type 

- Number of leaves on a tree 

- Number of times a user visits LinkedIn in a day 

- Length of a tweet. 
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Discrete Random Variables : 

A discrete random variable is one which may take on only a countable number of distinct values 

such as 0,1,2,3,4,........ Discrete random variables are usually counts. If a random variable can 

take only a finite number of distinct values, then it must be discrete. Examples of discrete 

random variables include the number of children in a family, the Friday night attendance at a 

cinema, the number of patients in a doctor's surgery, the number of defective light bulbs in a box 

of ten. 

The probability distribution of a discrete random variable is a list of probabilities associated with 

each of its possible values. It is also sometimes called the probability function or the probability 

mass function 

 

Suppose a random variable X may take k different values, with the probability that X = xi defined 

to be P(X = xi) = pi. The probabilities pi must satisfy the following: 

1: 0 < pi < 1 for each i 

2: p1 + p2 + ... + pk = 1. 

Example 

Suppose a variable X can take the values 1, 2, 3, or 4. 

The probabilities associated with each outcome are described 

by the following table: 

Outcome 1 2 3 4 

Probability 0.1 0.3 0.4 0.2 

The probability that X is equal to 2 or 3 is the sum of the two 

probabilities: P(X = 2 or X = 3) = P(X = 2) + P(X = 3) = 0.3 

+ 0.4 = 0.7. Similarly, the probability that X is greater than 1 is 

equal to 1 - P(X = 1) = 1 - 0.1 = 0.9, by the complement rule. 

 

Continuous Random Variables 

A continuous random variable is one which takes an infinite number of possible values. 

Continuous random variables are usually measurements. Examples include height, weight, the 

amount of sugar in an orange, the time required to run a mile. 

A continuous random variable is not defined at specific values. Instead, it is defined over 

an interval of values, and is represented by the area under a curve (known as an integral). The 

probability of observing any single value is equal to 0, since the number of values which may be 

assumed by the random variable is infinite. 

http://www.stat.yale.edu/Courses/1997-98/101/probint.htm#rule4
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Suppose a random variable X may take all values over an interval of real numbers. Then the 

probability that X is in the set of outcomes A, P(A), is defined to be the area above A and under a 

curve. The curve, which represents a function p(x), must satisfy the following: 

1: The curve has no negative values (p(x) > 0 for all x) 

2: The total area under the curve is equal to 1. 

A curve meeting these requirements is known as a density curve. 

All random variables (discrete and continuous) have a cumulative distribution function. It is a 

function giving the probability that the random variable X is less than or equal to x, for every 

value x. For a discrete random variable, the cumulative distribution function is found by 

summing up the probabilities. 

Normal Probability Distribution 

 
The Bell-Shaped Curve 

The Bell-shaped Curve is commonly called the normal curve and is mathematically referred to 

as the Gaussian probability distribution. Unlike Bernoulli trials which are based on discrete 

counts, the normal distribution is used to determine the probability of a continuous random 

variable. 

 

The normal or Gaussian Probability Distribution is most popular and important because of its 

unique mathematical properties which facilitate its application to practically any physical 

problem in the real world.The constants μ and σ2 are the parameters; 

 “μ” is the population true mean (or expected value) of the subject phenomenon 

characterized by the continuous random variable, X, 

 “σ2” is the population true variance characterized by the continuous random variable, X. 

 Hence, “σ” the population standard deviation characterized by the continuous random 

variable X; 

 the points located at μ−σ and μ+σ are the points of inflection; that is, where the graph 

changes from cupping up to cupping down 

https://www.sciencedirect.com/science/article/pii/B9780128029671000073
https://www.sciencedirect.com/topics/mathematics/gaussian
https://www.sciencedirect.com/topics/mathematics/gaussian
https://www.sciencedirect.com/topics/mathematics/bernoulli-trial
https://www.sciencedirect.com/topics/mathematics/gaussian
https://www.sciencedirect.com/topics/mathematics/gaussian
https://www.sciencedirect.com/topics/mathematics/population-standard-deviation
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The normal curve graph of the normal probability distribution) is symmetric with 

respect to the mean μ as the central position. That is, the area between μ and κ units to the 

left of μ is equal to the area between μ and κ units to the right of μ. 

 

 

 

 

 

There is not a unique normal probability distribution.The figure below is a graphical 

representation of the normal distribution for a fixed value of σ2 with μ varying. 

 

 

 

 

 

 

 
The figure below is a graphical representation of the normal distribution for a fixed value 

of μ with varying σ2. 

 
 
 
 
 
 
 
 

 
SAMPLING and SAMPLING DISTRIBUTION 

Sampling is a process used in statistical analysis in which a predetermined number of 

observations are taken from a larger population.It helps us to make statistical inferences 

about the population.A population can be defined as a whole that includes all items and 

characteristics of the research taken into study. However, gathering all this information is 

time consuming and costly. We therefore make inferences about the population with the help 

of samples. 

Random sampling: 

In data collection, every individual observation has equal probability to be selected into a 

sample. In random sampling, there should be no pattern when drawing a sample. 

https://www.sciencedirect.com/topics/mathematics/graphical-representation
https://www.sciencedirect.com/topics/mathematics/graphical-representation
https://www.investopedia.com/terms/p/population.asp
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Probability sampling: 

It is the sampling technique in which every individual unit of the population has greater than 

zero probability of getting selected into a sample. 

Non-probability sampling: 

It is the sampling technique in which some elements of the population have no probability of 

getting selected into a sample. 

Cluster samples: 

It divides the population into groups (clusters). Then a random sample is chosen from the 

clusters. 

Systematic sampling : select sample elements from an ordered frame. A sampling frame is 

just a list of participants that we want to get a sample from. 

Stratified sampling : sample each subpopulation independently. First, divide the population 

into homogeneous (very similar) subgroups before getting the sample. Each population 

member only belongs to one group. Then apply simple random or a systematic method 

within each group to choose the sample. 

 

Sampling Distribution 

A sampling distribution is a probability distribution of a statistic. It is obtained through a large 

number of samples drawn from a specific population.It is the distribution of all possible values 

taken by the statistic when all possible samples of a fixed size n are taken from the population. 

Sampling Distributions and Inferential Statistics 

Sampling distributions are important for inferential statistics. A population is specified and the 

sampling distribution of the mean and the range were determined. In practice, the process 

proceeds the other way: the sample data is collected and from these data we estimate parameters 

of the sampling distribution. This knowledge of the sampling distribution can be very useful.  

 Knowing the degree to which means from different samples would differ from each other and 

from the population mean ( this would give an idea of how close the particular sample mean 

is likely to be to the population mean ) 

 The most common measure of how much sample means differ from each other is the 

standard deviation of the sampling distribution of the mean. This standard deviation is called 

the standard error of the mean. 

 If all the sample means were very close to the population mean, then the standard error of the 

mean would be small. On the other hand, if the sample means varied considerably, then the 

standard error of the mean would be large. 

https://www.statisticshowto.datasciencecentral.com/what-is-cluster-sampling/
https://www.statisticshowto.datasciencecentral.com/simple-random-sample/
https://www.statisticshowto.datasciencecentral.com/systematic-sampling/
https://www.statisticshowto.datasciencecentral.com/sampling-frame/
http://www.merriam-webster.com/dictionary/homogeneous
https://www.investopedia.com/terms/p/probabilitydistribution.asp
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Sampling distribution of the sample mean 

 

1. We take many random 

samples of a given size n 

from a population with mean 

µ and standard deviation σ. 

2. Some sample means will be 

above the population mean µ 

and some will be below, 

making up the sampling 

distribution. 
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R overview and Installation 

R is a programming language and software environment for statistical analysis, graphics 

representation and reporting. R was created by Ross Ihaka and Robert Gentleman at the 

University of Auckland, New Zealand, and is currently developed by the R Development Core 

Team. 

The core of R is an interpreted computer language which allows branching and looping as well 

as modular programming using functions. R allows integration with the procedures written in 

the C, C++, .Net, Python or FORTRAN languages for efficiency. 

R is freely available under the GNU General Public License, and pre-compiled binary versions 

are provided for various operating systems like Linux, Windows and Mac. 

R is free software distributed under a GNU-style copy left, and an official part of the GNU 
project called GNUs. 

 

Features of R 

 R is a well-developed, simple and effective programming language which includes 

conditionals, loops, user defined recursive functions and input and output facilities. 

 R has an effective data handling and storage facility, 

 R provides a suite of operators for calculations on arrays, lists, vectors and matrices. 

 R provides a large, coherent and integrated collection of tools for data analysis. 

 R provides graphical facilities for data analysis and display either directly at the 

computer or printing at the papers. 

To Install R: 

1. Open an internet browser and go to www.r-project.org. 

2. Click the "download R" link in the middle of the page under "Getting Started." 

3. Select a CRAN location (a mirror site) and click the corresponding link. 

4. Click on the "Download R for Windows" link at the top of the page. 

5. Click on the "install R for the first time" link at the top of the page. 

6. Click "Download R for Windows" and save the executable file somewhere on computer. Run 

the .exe file and follow the installation instructions. 

7. Now that R is installed, next step is to download and install RStudio. 

To Install RStudio 

1. Go to www.rstudio.com and click on the "Download RStudio" button. 

2. Click on "Download RStudio Desktop." 

3. Click on the version recommended for your system, or the latest Windows version, and save the 

executable file. Run the .exe file and follow the installation instructions. 

http://www.r-project.org/
http://www.rstudio.com/
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R Command Prompt 

Once R environment setup is done, then it’s easy to start R command prompt by just typing the 

following command at command prompt – “$ R” 

This will launch R interpreter and will get a prompt > where we can start typing your program 

as follows − 

> myString <- "Hello, World!" 

> print ( myString) 

[1] "Hello, World!" 

Here first statement defines a string variable myString, where we assign a string "Hello, 

World!" and then next statement print() is being used to print the value stored in variable 

myString. 

 

R Script File 

execute scripts at command prompt with the help of R interpreter called Rscript. 

# My first program in R Programming 

myString <- "Hello, World!" 

print ( myString) 

Save the above code in a file test.R and execute it at command prompt as given below. 

$ Rscript test.R 

When we run the above program, it produces the following result. 

"Hello, World!" 

Comments 

Comments are like helping text in your R program and they are ignored by the interpreter while 

executing actual program. Single comment is written using # in the beginning of the statement 

as follows − 

# My first program in R Programming 

R does not support multi-line comments but they can be written as follows: 

"This is a demo for multi-line comments and it should be put inside either a 

single OR double quote" 

myString <- "Hello, World!" 

print ( myString) 

Result for above code is: 
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"Hello, World!" 

 

R data types: 

The variables are assigned with R-Objects and the data type of the R-object becomes the data 

type of the variable. There are many types of R-objects. The frequently used ones are − 

 Vectors 

 Lists 

 Matrices 

 Arrays 

 Factors 

 Data Frames 

The simplest of these objects is the vector object and there are six data types of these atomic 
vectors, also termed as six classes of vectors. The other R-Objects are built upon the atomic 

vectors. 
 

 

Data Type Example Verify 

Logical TRUE, FALSE v <- TRUE 

print(class(v)) 

[1] "logical" 

Numeric 12.3, 5, 999 v <- 23.5 

print(class(v)) 

[1] "numeric" 

Integer 2L, 34L, 0L v <- 2L 

print(class(v)) 

[1] "integer" 

Complex 3 + 2i v <- 2+5i 

print(class(v)) 

[1] "complex" 

Character 'a' , '"good", "TRUE", '23.4' v <- "TRUE" 

print(class(v)) 

[1] "character" 

Raw "Hello" is stored as 48 65 6c 6c 6f v <- charToRaw("Hello") 

print(class(v)) 

[1] "raw" 
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In R programming, the very basic data types are the R-objects called vectors which hold 

elements of different classes as shown above. 

 

Vectors 

When you want to create vector with more than one element, you should use c() function which 

means to combine the elements into a vector. 

# Create a vector. 

apple <- c('red','green',"yellow") 

print(apple) 

# Get the class of the vector. 

print(class(apple)) 

When we execute the above code, it produces the following result − 

"red" "green" "yellow" 

"character" 

 

Lists 

A list is an R-object which can contain many different types of elements inside it like vectors, 

functions and even another list inside it. 

# Create a list. 

list1 <- list(c(2,5,3),21.3,sin) 

# Print the list. 

print(list1) 

When we execute the above code, it produces the following result − 

[[1]] 

[1] 2 5 3 
[[2]] 

[1] 21.3 

[[3]] 

function (x) .Primitive("sin") 

 

Matrices 

A matrix is a two-dimensional rectangular data set. It can be created using a vector input to the 

matrix function. 

# Create a matrix. 

M = matrix( c('a','a','b','c','b','a'), nrow = 2, ncol = 3, byrow = TRUE) 

print(M) 

When we execute the above code, it produces the following result − 

[,1] [,2] [,3] 

[1,] "a" "a" "b" 
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[2,] "c" "b" "a" 

 

Arrays 

While matrices are confined to two dimensions, arrays can be of any number of dimensions. 

The array function takes a dim attribute which creates the required number of dimension. In the 

below example we create an array with two elements which are 3x3 matrices each. 

# Create an array. 

a <- array(c('green','yellow'),dim = c(3,3,2)) 

print(a) 

When we execute the above code, it produces the following result − 

, , 1 

[,1] [,2] [,3] 

[1,] "green" "yellow" "green" 

[2,] "yellow" "green" "yellow" 

[3,] "green" "yellow" "green" 

, , 2 

[,1] [,2] [,3] 

[1,] "yellow" "green" "yellow" 

[2,] "green" "yellow" "green" 

[3,] "yellow" "green" "yellow" 

 

Data Frames 

Data frames are tabular data objects. Unlike a matrix in data frame each column can contain 

different modes of data. The first column can be numeric while the second column can be 

character and third column can be logical. It is a list of vectors of equal length. Data Frames are 

created using the data.frame() function. 

# Create the data frame. 

BMI <- data.frame( gender = c("Male", "Male","Female"), height = c(152, 171.5, 165), 

weight = c(81,93, 78), Age = c(42,38,26)) 

print(BMI) 

Result − 

gender height weight Age 
1 Male 152.0 81 42 

2 Male 171.5 93 38 

3 Female 165.0 

 
R - Variables 

78 26 

A variable provides us with named storage that our programs can manipulate. A variable in R 

can store an atomic vector, group of atomic vectors or a combination of many R objects. A valid 
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variable name consists of letters, numbers and the dot or underline characters. The variable name 

starts with a letter or the dot not followed by a number. 

Variable Name Validity Reason 

var_name2. valid Has letters, numbers, dot and underscore 

var_name% Invalid Has the character '%'. Only dot(.) and underscore allowed. 

2var_name invalid Starts with a number 

.var_name, 

var.name 

valid Can start with a dot(.) but the dot(.)should not be followed by a 

number. 

.2var_name invalid The starting dot is followed by a number making it invalid. 

_var_name invalid Starts with _ which is not valid 

 

R - Operators 

An operator is a symbol that tells the compiler to perform specific mathematical or logical 

manipulations. R language is rich in built-in operators and provides following types of 

operators. 

 

Types of Operators 

types of operators in R programming − 

 

 Arithmetic Operators 

 Relational Operators 

 Logical Operators 

 Assignment Operators 

 Miscellaneous Operators 

 

Descriptive Data analysis using R: 

R provides a wide range of functions for obtaining summary statistics. One method of obtaining 

descriptive statistics is to use the sapply( ) function with a specified summary statistic. 

 

Possible functions used in sapply include mean, sd, var, min, max, median, range, and 

quantile. 

sapply(mydata, mean, na.rm=TRUE) 
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Check your data 

You can inspect your data using the functions head() and tails(), which will display the first and 
the last part of the data, respectively. 

# Print the first 6 rows 

head(my_data, 6) 

Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
1 5.1 3.5 1.4 0.2 setosa 

2 4.9 3.0 1.4 0.2 setosa 

3 4.7 3.2 1.3 0.2 setosa 

4 4.6 3.1 1.5 0.2 setosa 

5 5.0 3.6 1.4 0.2 setosa 
6 5.4 3.9 1.7 0.4 setosa 

 

R functions for computing descriptive statistics 

Some R functions for computing descriptive statistics: 
 

Description R function 

Mean mean() 

Standard deviation sd() 

Variance var() 

Minimum min() 

Maximum maximum() 

Median median() 

Range of values (minimum and maximum) range() 

Sample quantiles quantile() 

Generic function summary() 

Interquartile range IQR() 

 

Descriptive statistics for a single group 

Measure of central tendency: mean, median, mode 

Roughly speaking, the central tendency measures the “average” or the “middle” of your data. 

The most commonly used measures include: 

 the mean: the average value. It’s sensitive to outliers. 

 the median: the middle value. It’s a robust alternative to mean. 

 and the mode: the most frequent value 

In R, 

 The function mean() and median() can be used to compute the mean and the median, 

respectively; 

 The function mfv() [in the modeest R package] can be used to compute the mode of a 

variable. 
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The R code below computes the mean, median and the mode of the 

variable Sepal.Length [in my_data data set]: 

 

# Compute the mean value 

mean(my_data$Sepal.Length) 

[1] 5.843333 

 

# Compute the median value 

median(my_data$Sepal.Length) 

[1] 5.8 

 

# Compute the mode 

# install.packages("modeest") 

require(modeest) 

mfv(my_data$Sepal.Length) 

[1] 5 

Measure of variability 

Measures of variability gives how “spread out” the data are. 

Range: minimum & maximum 

 Range corresponds to biggest value minus the smallest value. It gives you the full spread of 

the data. 

# Compute the minimum value 

min(my_data$Sepal.Length) 

[1] 4.3 
# Compute the maximum value 

max(my_data$Sepal.Length) 

[1] 7.9 
# Range 

range(my_data$Sepal.Length) 

[1] 4.3 7.9 

 

Interquartile range 

The interquartile range (IQR) - corresponding to the difference between the first and third 

quartiles - is sometimes used as a robust alternative to the standard deviation. 

 R function: 

quantile(x, probs=seq(0, 1, 0.25)) 

 x: numeric vector whose sample quantiles are wanted. 

 probs: numeric vector of probabilities with values in [0,1]. 
 Example: 

quantile(my_data$Sepal.Length) 

0% 25% 50% 75% 100% 

4.3 5.1 5.8 6.4 7.9 
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To compute deciles (0.1, 0.2, 0.3, …., 0.9), use this: 

quantile(my_data$Sepal.Length, seq(0, 1, 0.1)) 

To compute the interquartile range, type this: 

IQR(my_data$Sepal.Length) 

[1] 1.3 

Variance and standard deviation 

 

The variance represents the average squared deviation from the mean. The standard deviation is 

the square root of the variance. It measures the average deviation of the values, in the data, from 

the mean value. 

# Compute the variance 

var(my_data$Sepal.Length) 

# Compute the standard deviation = 

# square root of th variance 

sd(my_data$Sepal.Length) 

 

Computing an overall summary of a variable and an entire data frame 

summary() function 

 Summary of a single variable. Five values are returned: the mean, median, 25th and 75th 

quartiles, min and max in one single line call: 

summary(my_data$Sepal.Length) 

Min. 1st Qu. Median  Mean 3rd Qu.  Max. 

4.300 5.100 5.800 5.843 6.400 7.900 
 Summary of a data frame. In this case, the function summary() is automatically applied to 

each column. The format of the result depends on the type of the data contained in the 

column. For example: 

o If the column is a numeric variable, mean, median, min, max and quartiles are returned. 
o If the column is a factor variable, the number of observations in each group is returned. 

summary(my_data, digits=1) 

Sepal.Length Sepal.Width Petal.Length Petal.Width Species 

Min. :4 Min. :2 Min. :1 Min. :0.1 setosa :50 

1st Qu.:5 1st Qu.:3 1st Qu.:2 1st Qu.:0.3 versicolor:50 

Median :6 Median :3 Median :4 Median :1.3 virginica:50 

Mean :6 Mean :3 Mean :4 Mean :1.2 

3rd Qu.:6 3rd Qu.:3 3rd Qu.:5 3rd Qu.:1.8 

Max. :8 Max. :4 Max. :7 Max. :2.5 

 

sapply() function 

# Compute the mean of each column 

sapply(my_data[, -5], mean) 

Sepal.Length Sepal.Width Petal.Length Petal.Width 
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5.843333 3.057333 3.758000 1.199333 

# Compute quartiles 

sapply(my_data[, -5], quantile) 

Sepal.Length Sepal.Width Petal.Length Petal.Width 
0% 4.3 2.0 1.00 0.1 

25% 5.1 2.8 1.60 0.3 

50% 5.8 3.0 4.35 1.3 

75% 6.4 3.3 5.10 1.8 
100% 7.9 4.4 6.90 2.5 

 
Descriptive Data Analysis using R > Description of Basic Functions used to Describe Data in R 

 

builtins() # List all built-in functions 

help() or ? or ?? #i.e. help(boxplot) 

getwd() and setwd() # working with a file directory 

q() #To close R 
ls() #Lists all user defined objects. 

rm() #Removes objects from an environment. 

demo() #Lists the demonstrations in the packages that are loaded. 

demo(package = 
.packages(all.available = TRUE)) 

#Lists the demonstrations in all installed packages. 

?NA # Help page on handling of missing data values 

abs(x) # The absolute value of "x" 

append() # Add elements to a vector 

cat(x) # Prints the arguments 

cbind() # Combine vectors by row/column (cf. "paste" in Unix) 

grep() # Pattern matching 

identical() # Test if 2 objects are *exactly* equal 

length(x) # Return no. of elements in vector x 
ls() # List objects in current environment 

mat.or.vec() # Create a matrix or vector 

paste(x) # Concatenate vectors after converting to character 

range(x) # Returns the minimum and maximum of x 

rep(1,5) # Repeat the number 1 five times 

rev(x) # List the elements of "x" in reverse order 

seq(1,10,0.4) # Generate a sequence (1 -> 10, spaced by 0.4) 

sequence() # Create a vector of sequences 

sign(x) # Returns the signs of the elements of x 

sort(x) # Sort the vector x 

order(x) # list sorted element numbers of x 

tolower(),toupper() # Convert string to lower/upper case letters 

unique(x) # Remove duplicate entries from vector 

vector() # Produces a vector of given length and mode 

formatC(x) # Format x using 'C' style formatting specifications 

floor(x), ceiling(x), round(x), # rounding functions 
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signif(x), trunc(x)  

Sys.time() # Return system time 

Sys.Date() # Return system date 

getwd() # Return working directory 
setwd() # Set working directory 

 
Inferential statistics using R 

Simple linear regression analysis 

• Regression analysis is a very widely used statistical tool to establish a relationship model 

between two variables 

• One of these variable is called predictor variable 

• The other variable is called response variable 

• The general mathematical equation for a linear regression is y = mx + b 

 

 Register_no Name Dept CGPA Height Weight 

1 18N312001 JOHN IT 8.5 151 63 

2 18N312005 SIM CSE 9.2 174 81 

3 18N312011 TIM IT 9.5 138 56 
4 18N312061 LILLY IT 9.34 186 91 

5 18N312099 CARL MECH 8.12 128 47 

 

• lm() Function 

• This function creates the relationship model 

between the predictor and the response variable. 

• The basic syntax for lm() function in linear 

regression is − 

• lm(formula,data) 

• # Apply the lm() function. 

• relation <- lm(stud.data$weight~ 

stud.data$height) 

• print(relation) 

Output 

Coefficients: 

(Intercept (m)) x 

-38.4551 0.6746 
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UNIT – II 

When it comes to Predictive Modeling, data Manipulation is an important and 

unavoidable phase. Machine learning algorithms are just not sufficient to build a robust 

predictive model. The approach must be to understand the business problem, the data, 

performing data manipulations, and then extracting business insights. Majority of time is spent in 

understanding the data and manipulating data as required. In this chapter we shall look at the 

details of Data Manipulation. 

Data Manipulation is also called as Data Exploration (also known as Data Wrangling or 

Data Cleaning). Data Manipulation is done to improve data accuracy and precision. Data 

Manipulation is a mandatory step when it comes to predictive modeling because of the many 

faults in data collection process, because of many uncontrollable factors involved in data 

collection. 

In reality, there is no right or wrong way to do Data Manipulation. However, one has to 

take necessary steps to improve the accuracy. Following are some of the points to be considered 

for the process of Data Manipulation: 

 Inbuilt functions in R can be used for data manipulation. Though it is a good step to start with 

initially, it is not very efficient, because the process must be repeated for number of times and it 

is also time consuming. 

 Packages in CRAN (Comprehensive R Archived Network) can be used for data manipulation 

which is more efficient. Using the CRAN packages is the most widely accepted industry way of 

doing Data Manipulation. 

 Machine Learning algorithms can also be used. For example, tree based boosting algorithms take 

care of missing data and outliers. Though time-efficient but requires thorough understanding of 

data. 

dplyr Package 

dplyr is a powerful R-package which transforms and summarizes tabular data with rows and 

columns. It is best known for data exploration and transformation. Its chaining syntax makes it 

highly adaptive to use. It includes 5 major data manipulation commands: 

 filter – filters the data based on a condition 

 select –used to select columns of interest from a data set 

 arrange –used to arrange data set values on ascending or descending order 
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 mutate – used to create new variables from existing variables 

 summarise (with group_by) – used to perform analysis by commonly used operations such as 

min, max, mean count etc. 

Filter rows with filter() 

filter() command can be used to select a subset of rows in a data frame. The first argument for 

filter() is the data frame. The subsequent arguments refer to variables within that data frame, 

selecting rows where the expression is TRUE. 

In this example, we will be using dataset named Iris, this dataset is a public data set. The 

data set consists of 50 samples from each of three species of Iris (Iris setosa, Iris virginica and 

Iris versicolor). Four features were measured from each sample: the length and the width of the 

sepals and petals, in centimeters. Based on the combination of these four features, Fisher 

developed a linear discriminant model to distinguish the species from each other. 

To install dplyr, use the below command 

install.packages("dplyr") 

 

To load dplyr, use the below command 

library(dplyr) 
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Select columns with select() 

select() allows one to rapidly zoom in on a useful subset using operations that usually only work 

on numeric variable positions: 
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Arrange rows with arrange() 

arrange() re-orders the rows. It takes a data frame, and a set of column names (or more 

complicated expressions) to order the rows. If more than one column name is given, each 

additional column is used to break ties in the values of preceding columns. 
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Add new columns with mutate() 

This function, mutate() adds new variables while preserving the existing ones. Mutate() is used 

to select sets of existing columns and add new columns that are functions of existing columns. 

Following is the example: 
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Summarise values with summarise() 

The summarise() collapses a data frame to a single row. 
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data.table Package 

A data table is nothing but a group of related facts arranged in rows and columns and is used to 

record information. data.table can be used to perform faster manipulation in a data set. Using 

data.table reduces computing time when compared to data.frame. A data table has 3 parts namely 

DT[i,j,by]. 

Here, we are instructing R to subset the rows using ‘i’, to calculate ‘j’ which is grouped by ‘by’. 

Most of the times, ‘by’ relates to categorical variable. In the code below, we have used 2 data 

sets (airquality and iris). 
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reshape2 Package 

reshape2 is an R package, was written by Hadley Wickham which makes it easy to transform 

data between wide and long formats. reshape2 package is used to reshape data. Using the 

reshape2 package, we can combine features that have unique values. It has 2 functions namely 

melt and cast. 

 melt: Converts data from wide format to long format. It is a form of restructuring where multiple 

categorical columns are ‘melted’ into unique rows. Example is given below: 
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 cast: converts data from long format to wide format. It starts with melted data and reshapes into 

long format. It’s the reverse of melt function. It has two functions namely, dcast and acast. 

- dcast returns a data frame as output. 

- acast returns a vector/matrix/array as the output. 

 

Let’s understand it using the code below. 
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tidyr Package 

tidyr is a package which was developed by Hadley Wickham which makes it easy to tidy the 

data. To make the data look neat and tidy, use the tidyr package. The package has 4 major 

functions. You can use these functions if you are stuck in the data exploration phase, along with 

dplyr. 

 gather() – ‘gathers’ multiple columns and converts them into key:value pairs. This 

function transforms wide form of data to long form. It can be used as an alternative to ‘melt’ in 

reshape package. 

 spread() – Does reverse of gather. It accepts a key:value pair and converts it into separate 

columns. 

 separate() – Splits a column into multiple columns. 

 unite() – Does reverse of separate. It unites multiple columns into single column 
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Lubridate Package 

Lubridatepackage, makes it easier to work with dates and times. Use the Lubridate package to 

reduce the issues related to working of data time variable in R. The inbuilt function of this 

package helps in easy parsing in dates and times. Lubridate is used with data comprising of 

timely data. Following are three basic tasks that are accomplished using Lubridate – The update, 

duration function, and data extraction functions. 
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Working with Base R Graphics (Scatter Plot, Bar Plot, and Histogram) 

ggplot2 Package 

ggplot2 offers a wide range of colors and patterns. To understand what is necessary to get 

started, follow the codes below. You must be proficient with plotting at least 3 graphs – Scatter 

Plot, Bar Plot, and Histogram. 

 

Scatter Plot : 

A Scatter Plot is a graph in which the values of two variables are plotted along two axes, the 

pattern of the resulting points revealing any correlation present. 

 

With scatter plots we can explain how the variables relate to each other. Which is defined as 

correlation. Positive, Negative, and None (no correlation) are the three types of correlation. 
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Limitations of a Scatter Diagram 

Below are the few limitations of a scatter diagram: 

 

• With Scatter diagrams we cannot get the exact extent of correlation. 

• Quantitative measure of the relationship between the variable cannot be viewed. Onlyshows 

the quantitative expression. 

• The relationship can only show for two variables. 

 

Advantages of a Scatter Diagram 

Below are the few advantages of a scatter diagram: 

• Relationship between two variables can be viewed. 

• For non-linear pattern, this is the best method. 

• Maximum and minimum value, can be easily determined. 

• Observation and reading is easy to understand 

• Plotting the diagram is very simple. 

 

Bar Plot 

Abarplot (or barchart) is one of the most common type of graphic. It shows the relationship 

between a numeric variable and a categoric variable. 

Bar Plot are classified into four types of graphs - bar graph or bar chart, line graph, pie chart, and 

diagram. 

 

Limitations of Bar Plot: 

When we try to display changes in speeds such as acceleration, Bar graphs wont help us. 

 

Advantages of Bar plot: 

• Bar charts are easy to understand and interpret. 

• Relationship between size and value helps for in easy comparison. 

• They're simple to create. 

• They can help in presenting very large or very small values easily. 

 

Histogram 

A histogram represents the frequency distribution of continuous variables. while, a bar graph is a 

diagrammatic comparison of discrete variables. 

Histogram presents numerical data whereas bar graph shows categorical data. 

The histogram is drawn in such a way that there is no gap between the bars. 
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Limitations of Histogram: 

A histogram can present data that is misleading as it has many bars. 

Only two sets of data are used, but to analyze certain types of statistical data, more than two sets 

of data are necessary 

 

Advantages of Histogram: 

Histogram helps to identify different data, the frequency of the data occurring in the dataset and 

categories which are difficult to interpret in a tabular form. It helps to visualize the distribution 

of the data. 

lements of ggplot2 

 

Data: The data-set for which we would want to plot a graph. 

 

Aesthetics: The metrics onto which we plot our data, we can map xaxis, yaxis, fill, col, shape, 

size. 

 

Geometry: Visual Elements to plot the data. 

Facet: Groups by which we divide the data. 

Working with Base R Graphics 
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WATSON STUDIO 

Watson Studio provides you with the environment and tools to solve your business problems by 

collaboratively working with data. You can choose the tools you need to analyze and visualize 

data, to cleanse and shape data, to ingest streaming data, or to create and train machine learning 

models. 

This illustration shows how the architecture of Watson Studio is centered around the project. A 

project is where you organize your resources and work with data. 
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Visualizing information in graphical ways can give you insights into your data. By enabling you 

to look at and explore data from different perspectives, visualizations can help you identify 

patterns, connections, and relationships within that data as well as understand large amounts of 

information very quickly. 

Create a project - 

To create a project : 

 Click New project on the Watson Studio home page or your My Projects page. 

 Choose whether to create an empty project or to create a project based on an exported project file 

or a sample project. 

 If you chose to create a project from a file or a sample, upload a project file or select a sample 

project. See Importing a project. 

 On the New project screen, add a name and optional description for the project. 

 

 Select the Restrict who can be a collaborator check box to restrict collaborators to members of 

your organization or integrate with a catalog. The check box is selected by default if you are a 

member of a catalog. You can’t change this setting after you create the project. 

 If prompted, choose or add any required services. 

 Choose an existing object storage service instance or create a new one. 

 Click Create. You can start adding resources if your project is empty or begin working with the 

resources you imported. 
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To add data files to a project: 

 From your project’s Assets page, click Add to project > Data or click the Find and add data icon 

().You can also click the Find and add data icon from within a notebook or canvas. 

 In the Load pane that opens, browse for the files or drag them onto the pane. You must stay on 

the page until the load is complete. You can cancel an ongoing load process if you want to stop 

loading a file. 
 

Case Study: 

Let us take the Iris Data set to see how we can visualize the data in Watson studio. 
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Adding Data to Data Refinery 

Visualizing information in graphical ways can give you insights into your data. By enabling you 

to look at and explore data from different perspectives, visualizations can help you identify 

patterns, connections, and relationships within that data as well as understand large amounts of 

information very quickly. You can also visualize your data with these same charts in an SPSS 

Modeler flow. Right-click a node and select Profile. 
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To visualize your data: 

 From Data Refinery, click the Visualizations tab. 

 Start with a chart or select columns. 

1. Click any of the available charts. Then add columns in the DETAILS panel that opens on the left 

side of the page. 

2. Select the columns that you want to work with. Suggested charts will be indicated with a dot next 

to the chart name. Click a chart to visualize your data. 

Click on refine 
 

Click on Visualization tab: 
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Add the columns by selecting. 
 

Visualization of Data on Watson Studio 

Select Scatter plot: 



Data Visualization Page 56  

 
 

 

 

 

Various types of option to visualize the data: 

Select Histogram and select the x axis and y axis : 
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IBM WATSON STUDIO 

IBM Watson Studio is an integrated environment designed to make it easy to develop, train, 

manage models, and deploy AI-powered applications and is a SaaS solution delivered on the 

IBM Cloud. It is evolving Data Science Experience on IBM Cloud with lot of new features 

to build AI applications. 

 

With Watson Studio provides the following facilities: 

 

 Extends the capabilities we provide around deep learning, including TensorFlow scoring 

 Allows one to access pre-trained models from the Watson Services, such as Watson 

Visual Recognition 

 Enables you to bring in non-structured data 

 Further automating and providing insight into model management 

 Continues to provide you with a choice of best-in-breed data science/ML tools 

 Strengthens the drag-and-drop interface to build analytics models using SPSS Modeler 

 Enables one to visualize the insights with dynamic dashboards 

 

Projects 

A project is how you organize your resources to work with data. project resources can include: 

 Data asset files, connections, connected data and flows 

 Analytic assets that describe how to work with data 

 Runtime environments 

 Collaborators 

https://www.ibm.com/cloud/watson-studio
https://dataplatform.cloud.ibm.com/docs/content/wsj/manage-data/manage-projects.html#assets
https://dataplatform.cloud.ibm.com/docs/content/wsj/manage-data/manage-projects.html#assets
https://dataplatform.cloud.ibm.com/docs/content/wsj/manage-data/manage-projects.html#enviro
https://dataplatform.cloud.ibm.com/docs/content/wsj/manage-data/manage-projects.html#collaborators
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 A readme file to document the project 

 Access to the RStudio IDE 

 Other project-wide settings 

 

Overview page 

The Overview page provides the following information about the project: 

 A summary of storage usage. 

 The number of assets, and collaborators. 

 A list of recent notifications for the project. 

 A readme file to document the project, at the bottom of the page. The readme file uses 

standard Markdown formatting. 

 

Assets 

 

If one have the Admin or Editor permissions on a project, he can add assets by choosing the 

asset type from the Add to project menu. The types of assets can be added are: 

 Data assets from local files, catalogs, or the Gallery 

 Connections to cloud, on-premises, and streaming data sources 

 Connected data from an existing connection asset 

 Folder assets to view the files within a folder in a file system 

 Jupyter Notebooks to analyze data 

 Modeler flows to automate the flow of data through a model 

 Streams flows to ingest streaming data 

 Models to analyze data 

 Decision Optimization models to solve scenarios 

 Experiments to train deep learning models 

 Visual Recognition models to categorize images 

 Dashboards to visualize data without code 

 Data Refinery flows to refine data 

 Natural Language Classification models 

 

Environments 

On the Environments page, one can define the hardware size and software configuration 

for the runtime environments. 

 

A. Creating a Project 

 

1. Click New project on the Watson Studio home page or your My Projects page. 

2. Choose whether to create an empty project or to create a project based on an exported project 

file or a sample project. 

https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/rstudio-overview.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/manage-data/manage-projects.html#settings
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/markd-jupyter.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/manage-data/add-data-project.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/manage-data/create-conn.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/manage-data/add-data-project.html#add-a-data-asset-from-a-connection
https://dataplatform.cloud.ibm.com/docs/content/wsj/manage-data/folder-asset.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/notebooks-parent.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/ml-overview.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/streaming-pipelines/overview-streaming-pipelines.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/ml-overview.html
https://dataplatform.cloud.ibm.com/docs/content/DO/DOWS-Cloud_home.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/ml_dlaas_working_with_experiments.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/visual-recognition-overview.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/analytics-dashboard.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/refinery/data_flows.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/nlc-overview.html
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3. If you chose to create a project from a file or a sample, upload a project file or select a 

sample project. See Importing a project. 

4. On the New project screen, add a name and optional description for the project. 

5. Select the Restrict who can be a collaborator checkbox to restrict collaborators to members of 

the organization or integrate with a catalog. The checkbox is selected by default if you are a 

member of a catalog. You can’t change this setting after you create the project. 

6. If prompted, choose or add any required services. 

7. Choose an existing object storage service instance or create a new one. 

8. Click Create. You can start adding resources if your project is empty, or begin working with 

the resources you imported. 

 

After creating a project, the next step is to add data to the project and prepare the data for 

analysis. Data assets can be added to the project from the local system, from a catalog, from the 

Gallery, or from connections to data sources. The following types of data assets can be added to 

a project: 

 

 Data assets from files from local system, including structured data, unstructured data, and 

images. The files are stored in the project’s IBM Cloud Object Storage bucket. 

 Connection assets that contain information for connecting to data sources. 

 Connected data assets that specify a table, view, or file that is accessed through a 

connection to a data source. 

 Folder assets that specify a path in IBM Cloud Object Storage. 

 

B. Preparing the Data: 

 

Adding Data to Data Refinery 

 

After creating a project, connections or after adding data assets to the project, data can be 

added to Data Refinery and start prepping that data for analysis. Data can be added to Data 

Refinery in one of several ways: 

 Select Refine from the menu of a data asset in the project 

 Preview a data asset in the project and then choose to refine it 

 Navigate to Data Refinery first and then add data to it 

 

Navigate to Data Refinery 

To access Data Refinery from within a project, Click Add to project > Data Refinery flow. If 

a Data Refinery flow is already available, go to the project’s Assets tab and click New Data 

Refinery flow in the Data Refinery flows section. 

Add data: 

https://dataplatform.cloud.ibm.com/docs/content/wsj/manage-data/import-project.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/admin/storage-options.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/getting-started/projects.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/getting-started/assets.html#file
https://dataplatform.cloud.ibm.com/docs/content/wsj/getting-started/assets.html#connection
https://dataplatform.cloud.ibm.com/docs/content/wsj/getting-started/assets.html#connected
https://dataplatform.cloud.ibm.com/docs/content/wsj/getting-started/assets.html#folder
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To add data after you navigate to Data Refinery, the following steps need to be followed: 

1. Select the data you want to work with from Data assets or from Connections. Data Refinery 

supports Avro, CSV, JSON, parquet and text files. 

From Data assets: 

o Select a data file (the selection includes data files that have already been shaped 

with Data Refinery) 

o Select a connected data asset 

From Connections: 

o Select a connection and file 

o Select a connection, folder, and file 

o Select a connection, schema, and table or view 

2. Click Add to load the data into Data Refinery. 

 

Specifying the format for data in Data Refinery 

 

When the data is read into Data Refinery, it should look like a well-formatted 

spreadsheet. If it doesn’t display in tabular form or it doesn’t look as expected, go to the Data 

tab. Scroll down to the SOURCE FILE information at the bottom of the page. Click the Specify 

data format icon. Modifying the default data format specification can help Data Refinery 

correctly read your data. 

 

To specify the format of your data, the following steps need to be followed: 

 

1. Indicate whether the first row of data contains column headers. If data doesn’t contain 

column headers, Data Refinery will add them so that they can be used in cleansing and shaping 

operations. 

2. Select the appropriate character encoding for data source, for example, CSV files are often 

UTF-8 encoded. 

3. Identify the character that separates each field or column value from the next value, for 

example, CSV files are often comma-delimited. 

4. Identify the character that encloses string values, for example, CSV files typically enclose 

strings in double quotation marks. 

5. Identify the character that’s used to escape other characters, for example, backslashes ( \ ) are 

commonly used as escape characters. Escaping is a string technique that identifies characters 

(such as double quotation marks) as being part of a string value. 

6. Click Apply to apply the format specification to the data and return to Data Refinery. 

 

Validating data in Data Refinery: 

 

Validation must be done at multiple points in the refinement process. To validate data, 

the following steps need to be followed: 
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1. From Data Refinery, click the Profile tab. 

2. Review the metrics for each column. 

3. Take appropriate actions, as described in the following sections, depending on what you 

learn. 

 

The metrics are frequency and statistics. Frequency is the number of times that a value, or 

a value in a specified range, occurs. Each frequency distribution (bar) shows the count of unique 

values in a column. Review the frequency distribution to find anomalies in data. Simply remove 

the values for cleansing the data. Statistics are a collection of quantitative data. The statistics for 

each column show the minimum, maximum, mean, and number of unique values in that column. 

Depending on a column’s data type, the statistics for each column will vary slightly. For 

example, statistics for a column of data type integer have minimum, maximum, and mean values 

while statistics for a column of data type string have minimum length, maximum length, and 

mean length values. 

 

Visualizing data in Data Refinery: 

 

Visualizing information in graphical ways can give insights into the data. By enabling 

one to look at and explore data from different perspectives, visualizations can identify patterns, 

connections, and relationships within that data as well as understand large amounts of 

information very quickly. 

 

To visualize your data: 

 

1. From Data Refinery, click the Visualizations tab. 

2. Start with a chart or select columns: 

o Click any of the available charts. Then add columns in the DETAILS panel that opens 

on the left side of the page. 

o Select the columns that you want to work with. Suggested charts will be indicated with a 

dot next to the chart name. Click a chart to visualize your data. 

 

 

 

 

 

Examples for dplyr, reshape2, data.table packages: 

df<-data.frame(id=101:110, 
name=c("A","B","C","D","E","F","G","H","I","J"),sal=c(45,89,26,45,33,75,68,12,19,58),strings 

AsFactors=FALSE) 

> str(df) 

'data.frame': 10 obs. of 3 variables: 
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$ id : int 101 102 103 104 105 106 107 108 109 110 

$ name: Factor w/ 10 levels "A","B","C","D",..: 1 2 3 4 5 6 7 8 9 10 

$ sal : num 45 89 26 45 33 75 68 12 19 58 

Dplyr package: 

> install.packages("dplyr") 

> library("dplyr") 

> filter(df,df$id>=106) 
 

id name sal 

1 106 F 75 

2 107 G 68 

3 108 H 12 

4 109 I 19 

5 110 J 58 

> arrange(df, df$sal) 

id name sal 

1 108 H 12 

2 109 I 19 

3 103 C 26 

4 105 E 33 

5 101 A 45 

6 104 D 45 

7 110 J 58 

8 107 G 68 

9 106 F 75 

10 102 B 89 

> arrange(df, desc(df$sal)) 
id name sal 

1 102 B 89 

2 106 F 75 

3 107 G 68 

4 110 J 58 

5 101 A 45 

6 104 D 45 

7 105 E 33 

8 103 C 26 

9 109 I 19 

10 108 H 12 

> select(df,name) 

name 

1 A 

2 B 

3 C 

4 D 

5 E 

6 F 

7 G 
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8 H 

9I 

10 J 

> select(df,-(sal)) 
id name 

1 101 A 

2 102 B 

3 103 C 

4 104 D 

5 105 E 

6 106 F 

7 107 G 

8 108 H 

9 109 I 

10 110 J 

> rename(df, salary=sal) 
id name salary 

1 101 A 45 

2 102 B 89 

3 103 C 26 

4 104 D 45 

5 105 E 33 

6 106 F 75 

7 107 G 68 

8 108 H 12 

9 109 I 19 

10 110 J 58 

> mutate(df, inc=sal+15) 
id name sal inc 

1 101 A 45 60 

2 102 B 89 104 

3 103 C 26 41 

4 104 D 45 60 

5 105 E 33 48 

6 106 F 75 90 

7 107 G 68 83 

8 108 H 12 27 

9 109 I 19 34 

10 110 J 58 73 

> transmute(df, inc=sal+15) 
inc 

1 60 

2 104 

3 41 

4 60 

5 48 

6 90 

7 83 

8 27 

9 34 

10 73 
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> summarise(df) 
data frame with 0 columns and 1 row 

> summarise(df,meansal=mean(df$sal)) 
meansal 

1 47 

> summarise(df,meansal=mean(df$sal),nrows=n()) 
meansal nrows 

1 47 10 

> df1<-data.frame(id=101:110, 

name=c("A","B","C","D","E","F","G","H","I","J"),sal=c(45,89,26,45,33,75,68,12,19,58), 

eadd=c("kphb","ecil","bhel","jntu","nzmpt","kphb","ecil","bhel","jntu","nzmpt"),edept=c("sales" 

,"marketing","hr","sales","marketing","hr","sales","marketing","hr","hr")) 

> df1%>%group_by(df1$eadd) 

# A tibble: 10 x 6 

# Groups: df1$eadd [5] 

id name sal eadd edept `df1$eadd` 

<int> <fct> <dbl> <fct> <fct> <fct> 

1 101 A 45 kphb sales kphb 

2 102 B 89 ecil marketing ecil 

3 103 C 26 bhel hr bhel 

4 104 D 45 jntu sales jntu 

5 105 E 33 nzmpt marketing nzmpt 

6 106 F 75 kphb hr kphb 

7 107 G 68 ecil sales ecil 

8 108 H 12 bhel marketing bhel 

9 109 I 19 jntu hr jntu 

10 110 J 58 nzmpt hr nzmpt 

> sample_n(df1,4) 

id name sal eadd edept 

1 103 C 26 bhel hr 

2 102 B 89 ecil marketing 

3 110 J 58 nzmpt hr 

4 109 I 19 jntu hr 

> sample_n(df1,4) 

id name sal eadd edept 

1 109 I 19 jntu hr 

2 103 C 26 bhel hr 

3 107 G 68 ecil sales 

4 102 B 89 ecil marketing 

> sample_n(df1,4) 

id name sal eadd edept 

1 110 J 58 nzmpt hr 

2 101 A 45 kphb sales 

3 105 E 33 nzmpt marketing 

4 109 I 19 jntu hr 

> sample_frac(df1,0.5) 
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id name sal eadd edept 

1 106 F 75 kphb hr 

2 108 H 12 bhel marketing 

3 101 A 45 kphb sales 

4 104 D 45 jntu sales 

5 107 G 68 ecil sales 

> sample_frac(df1,0.6) 

id name sal eadd edept 

1 110 J 58 nzmpt hr 

2 101 A 45 kphb sales 

3 107 G 68 ecil sales 

4 106 F 75 kphb hr 

5 104 D 45 jntu sales 

6 105 E 33 nzmpt marketing 

> sample_frac(df1,0.6) 

id name sal eadd edept 

1 101 A 45 kphb sales 

2 103 C 26 bhel hr 

3 107 G 68 ecil sales 

4 104 D 45 jntu sales 

5 102 B 89 ecil marketing 

6 110 J 58 nzmpt hr 

Data.table package: 

> emp<-data.table(eid=101:110, ename=c("A","B","C","D","E","F","G","H","I","J"), 

esal=c(85,89,78,63,26,45,31,95,81,62), 

eloc=c("kphb","nzmpt","mp","jntu","kkp","lkpl","lbngr","dsnr","nzmpt","mp")) 

> emp 
 eid ename esal eloc 

1: 101 A 85 kphb 

2: 102 B 89 nzmpt 

3: 103 C 78 mp 

4: 104 D 63 jntu 

5: 105 E 26 kkp 

6: 106 F 45 lkpl 

7: 107 G 31 lbngr 

8: 108 H 95 dsnr 

9: 109 I 81 nzmpt 

10: 110 J 62 mp 

> emp[eid==106] 
eid ename esal eloc 

1: 106 F 45 lkpl 

> emp[eid==106&esal==78] 
Empty data.table (0 rows and 4 cols): eid,ename,esal,eloc 

> emp[eid==106&esal==45] 
eid ename esal eloc 

1: 106 F 45 lkpl 
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> emp[order(esal)] 
 eid ename esal eloc 

1: 105 E 26 kkp 

2: 107 G 31 lbngr 

3: 106 F 45 lkpl 

4: 110 J 62 mp 

5: 104 D 63 jntu 

6: 103 C 78 mp 

7: 109 I 81 nzmpt 

8: 101 A 85 kphb 

9: 102 B 89 nzmpt 

10: 108 H 95 dsnr 

> emp[order(-esal)] 
 eid ename esal eloc 

1: 108 H 95 dsnr 

2: 102 B 89 nzmpt 

3: 101 A 85 kphb 

4: 109 I 81 nzmpt 

5: 103 C 78 mp 

6: 104 D 63 jntu 

7: 110 J 62 mp 

8: 106 F 45 lkpl 

9: 107 G 31 lbngr 

10: 105 E 26 kkp 

> emp[,ename] 
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" 

> emp[,list(ename)] 
ename 

1: A 

2: B 

3: C 

4: D 

5: E 

6: F 

7: G 

8: H 

9: I 

10: J 

> emp[,.(ename)] 

ename 

1: A 

2: B 

3: C 

4: D 

5: E 

6: F 

7: G 

8: H 

9: I 

10: J 
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> emp[,.(eid,ename)] 
 eid ename 

1: 101 A 

2: 102 B 

3: 103 C 

4: 104 D 

5: 105 E 

6: 106 F 

7: 107 G 

8: 108 H 

9: 109 I 

10: 110 J 

> emp[,.(eid,esal)] 
 eid esal 

1: 101 85 

2: 102 89 

3: 103 78 

4: 104 63 

5: 105 26 

6: 106 45 

7: 107 31 

8: 108 95 

9: 109 81 

10: 110 62 

> emp[,.(id=eid,nm=ename)] 
 id nm 

1: 101 A 

2: 102 B 

3: 103 C 

4: 104 D 

5: 105 E 

6: 106 F 

7: 107 G 

8: 108 H 

9: 109 I 

10: 110 J 

> emp[,.(eid,eloc=="mp")] 
 eid V2 

1: 101 FALSE 

2: 102 FALSE 

3: 103 TRUE 

4: 104 FALSE 

5: 105 FALSE 

6: 106 FALSE 

7: 107 FALSE 

8: 108 FALSE 

9: 109 FALSE 

10: 110 TRUE 

> emp[eid==106,.(eid,eloc=="mp")] 
eid V2 

1: 106 FALSE 
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> emp[eid==110,.(eid,eloc=="mp")] 
eid V2 

1: 110 TRUE 

> emp[,eid,by="eloc"] 

eloc eid 

1: kphb 101 

2: nzmpt 102 

3: nzmpt 109 

4: mp 103 

5: mp 110 

6: jntu 104 

7: kkp 105 

8: lkpl 106 

9: lbngr 107 

10: dsnr 108 

> emp[eloc=="nzmpt",eloc:="nizampet"] 

> emp 
 eid ename esal eloc 

1: 101 A 85 kphb 

2: 102 B 89 nizampet 

3: 103 C 78 mp 

4: 104 D 63 jntu 

5: 105 E 26 kkp 

6: 106 F 45 lkpl 

7: 107 G 31 lbngr 

8: 108 H 95 dsnr 

9: 109 I 81 nizampet 

10: 110 J 62 mp 

Reshape2 package: 

> install.packages(“reshape2”) 

> library("reshape2") 

> molten<-melt(emp,id=c("eid","ename"),measured=c("esal","eloc")) 
 

eid ename variable value 

1 101 A esal 85 

2 102 B esal 89 

3 103 C esal 78 

4 104 D esal 63 

5 105 E esal 26 

6 106 F esal 45 
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eid ename variable value 

7 107 G esal 31 

8 108 H esal 95 

9 109 I esal 81 

10 110 J esal 62 

11 101 A eloc kphb 

12 102 B eloc nizampet 

13 103 C eloc mp 

14 104 D eloc jntu 

15 105 E eloc kkp 

16 106 F eloc lkpl 

17 107 G eloc lbngr 

18 108 H eloc dsnr 

19 109 I eloc nizampet 

20 110 J eloc mp 

 

> t<-dcast(molten,eid+ename~variable) 

> t 
eid ename esal eloc 

1 101 A  85 kphb 

2 102 B 89 nizampet 

3 103 C  78 mp 

4 104 D  63 jntu 

5 105 E  26 kkp 

6 106 F  45 lkpl 
7 107 G  31 lbngr 

8 108 H  95 dsnr 

9 109 I 81 nizampet 

10 110 J  62 mp 

> t1<-acast(molten,eid+ename~variable) 

> t1 

esal eloc 

101_A "85" "kphb" 

102_B "89" "nizampet" 

103_C "78" "mp" 

104_D "63" "jntu" 

105_E "26" "kkp" 

106_F "45" "lkpl" 
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107_G "31" "lbngr" 

108_H "95" "dsnr" 

109_I "81" "nizampet" 

110_J "62" "mp" 

> class(t) 

[1] "data.frame" 

> class(t1) 

[1] "matrix" 

> t2<-dcast(molten,variable~eid+ename) 

> t2 

variable 101_A 102_B 103_C 104_D 105_E 106_F 107_G 108_H 109_I 110_J 

1 esal 85 89 78 63 26 45 31 95 81 62 

2 eloc kphb nizampet mp jntu  kkp lkpl lbngr dsnr nizampet mp 


	UNIT II
	UNIT III
	UNIT IV
	UNIT V
	TEXT BOOKS:
	REFERENCE BOOKS:
	1. Descriptive Statistics
	Two types of descriptive statistics
	Measures of Central Tendency: (Mean , Median , Mode)
	Mean (Arithmetic)
	Median:
	Mode
	Measures of spread:
	Variance and Standard Deviation
	1. Estimating parameters:
	i) Unbiased
	ii) Consistent
	iii) Accuracy
	Statement of Hypothesis
	Null Hypothesis
	Level of Significance
	Confidence level:
	Rejection region:
	Non rejection region:
	One-tail and Two-tail Test
	Types of Inferential Statistics Tests
	1. Linear Regression Analysis
	2. Analysis of Variance
	3. Analysis of Co-variance
	4. Statistical Significance (T-Test)
	5. Correlation Analysis
	Random Variables
	Example of Random variable
	Discrete Random Variables :
	Example
	Continuous Random Variables

	Normal Probability Distribution
	Random sampling:
	Probability sampling:
	Non-probability sampling:
	Cluster samples:
	Sampling Distribution
	Sampling Distributions and Inferential Statistics
	Sampling distribution of the sample mean
	R overview and Installation
	Features of R
	To Install R:
	To Install RStudio
	R Command Prompt
	R Script File
	Comments
	R data types:
	Vectors
	Lists
	Matrices
	Arrays
	Data Frames
	Types of Operators
	Descriptive Data analysis using R:
	Measure of central tendency: mean, median, mode
	Measure of variability
	Range: minimum & maximum
	Interquartile range
	Variance and standard deviation
	Computing an overall summary of a variable and an entire data frame summary() function
	sapply() function
	Inferential statistics using R Simple linear regression analysis
	UNIT – II
	dplyr Package
	Filter rows with filter()
	Select columns with select()
	Arrange rows with arrange()
	Add new columns with mutate()
	Summarise values with summarise()
	data.table Package
	reshape2 Package
	tidyr Package
	Lubridate Package
	Working with Base R Graphics (Scatter Plot, Bar Plot, and Histogram) ggplot2 Package
	Scatter Plot :
	Limitations of a Scatter Diagram
	Advantages of a Scatter Diagram
	Bar Plot
	Limitations of Bar Plot:
	Advantages of Bar plot:
	Histogram
	Limitations of Histogram:
	Advantages of Histogram:
	lements of ggplot2
	WATSON STUDIO
	Create a project - To create a project :
	To add data files to a project:
	Case Study:
	Adding Data to Data Refinery
	Projects
	Overview page
	Assets
	Environments
	A. Creating a Project
	B. Preparing the Data:
	Navigate to Data Refinery
	Add data:
	Specifying the format for data in Data Refinery
	Validating data in Data Refinery:
	Visualizing data in Data Refinery:
	Dplyr package:
	Data.table package:


