
Criterion 1	Curricular Aspects	100

1.1 Curricular Planning and Implementation (20)

1.1.1The Institution ensures effective curriculum planning and delivery through a well-planned and documented process including Academic calendar and conduct of continuous internal Assessment

Table of Contents

S.No	Description
1	Contents - Course File
2	Individual Time Table
3	Students Name List
4	Subject Information Record
5	Syllabus
6	Test Plan For Subject
7	Result Analysis Of Test
8	Corrective Action Report
9	Quality Objective Monitoring Record
10	Internal Test Question Paper
11	Internal Test Paper
12	Assignment Question Paper
13	Assignment Answer Sheet

Calculus,

Department Subject Code & Name Class & Batch Semester

CONTENTS – COURSE FILE

and

S.NO	PARTICULARS	REMARKS
1	Time Table	
2	Student name list	
3	Student arrear list	
4	Subject Information Record	
5	Syllabus	
6	Lesson Plan	
7	Test Plan for the Subject	.0
8	Result Analysis	
9	Corrective Action Report	
10	Quality objective monitoring record	
11	Internal test mark sheet(Consolidated)	
12	Internal test question paper with answer key	
13	Model question paper with answer key	
14	Slip test question paper with answer key	
15	Sample Answer paper for all test(Min-3)	
16	Content beyond the syllabus	
17	Tutorial Class – schedule and content	
18	Assignment – schedule and paper	
19	PPT - handout	
20	Question bank	
21	Sample university question papers(min 5 QP-recent exam)	
22	Personal Log book – Updated	~
23	Lecture Note	
24	Special Class if any, Approval letter, Schedule, content covered.	

	Prepared By	Approved By
Sign:		N. B12
Name:	of Jeevanan Cam.	M. Lathur
	(IU Faculty	HoD

CLASS TIME TABLE Department Science and Humanities

Semester : I

ACADEMIC YEAR : 2024-2025 (ODD) CLASS: I B.E - CSE

	CLASS:	B.E - CSE									VIII		
HOUR	I	11		Ш	IV		v	VI	100	VII	VIII		
DAY/ FIME	09.00 a.m. TO 9.55 a.m.	09.55 a.m. TO 10.50 a.m.	10.50 a.m. TO 11.05 a.m.		12.00 a.m. TO 12.55 p.m.	12.55 p.m. TO 1.40 p.m.	1.40 p.m. TO 2.20 p.m.	2.20 p.m. TO 3.00 p.m.	3.00 p.m. TO 3.15 p.m.	3.15 p.m. TO 3.55 p.m.	3.55 p.m TO 4.35 p.m.		
I			5- ₁₅		МАТ	and the second s	4	MAT					
п 🤞				М									
111	МАТ	мат	BREAK		LUNCH			BREAK	e				
IV			BRE			ĥ			BR ,	MAT			
v		· · · ·			100 A.	MAT							МАТ
VI			1		•		МАТ		1		12. v		
S.No	Subject Code		Name of	the Subject		Abbreviation	Name of the Staff & Dept.			No of hours			
1	MA3151	IA3151 Matrices and Calculus					G.Jeevanantham AP/MAT		/MAT	10			
CLASS	ADVISOR :	S.Venkatesa	n & V. Deep	an			5	TOTAL		10)		

	Prepared by	Verified by	Authorized by
Sign:	GE	M.B.K.	Me
Name:	Mr.G.Jeevanantham	Mrs.M SATHYA	Dr.M.VIJAYAKUMAR
Ti	me Table Incharge	HOD	PRINCIPAL

DEPARTMENT OF SCIENCE AND HUMANITIES

DEPARTMENT : B.E CSE

YEAR / SEM : 1 / I

ACADEMIC YEAR : 2024-2025

ACADEMIC TEAR 7 2011							
S	.No	Reg Number	Name of the Student	Dayscholar/ Hostel			
	1	732424104062	Mathavan.V	Hostel			
-	2	732424104063	Merlin jenisha Mery.M	Dayscholar			
+	3	732424104064	Methini.L	Dayscholar			
F	4	732424104065	Mohammad Fayaz.S	Dayscholar			
F	5	732424104066	Mohammed Suhail.S	Dayscholar			
F	6	732424104067	Monisha.N.P	Dayscholar			
F	7	732424104069	Nathiya.R	Dayscholar			
F	8	732424104070	Naveenkumar.R	Dayscholar			
ŀ	9	732424104071	Nivetha.P	Dayscholar			
ŀ	10	732424104072	Pradcepa. L	Dayscholar			
ł	11	732424104073	Prapeena.B	Dayscholar			
	12	732424104074	Prema.K	Hostel			
ł	13	732424104075	Priyadharsan.V	Dayscholar			
	14	732424104076	Ragul.O	Hostel			
	15	732424104077	Ragul.R	Hostel			
	16	732424104078	Rajapriyan.K	Hostel			
	17	732424104079	Sabarinathan. K	Dayscholar			
	18	732424104080	Sabarish.V	Dayscholar			
	19	732424104081	Sanjay.M	Dayscholar			
	20	732424104082	Sanjay Kumar.R	Dayscholar			
	21	732424104083	Sanmathi.S	Dayscholar			
	22	732424104084	Sanofar. M	Dayscholar			
	23	732424104085	Santhiya.S.V	Dayscholar			
	24	732424104086	Sarathi.G	Dayscholar			
	25	732424104087		Dayscholar			
	26	732424104088		Dayscholar			
	27	732424104089		Hostel			
	41	10212110100					

		ran an Tam. Faculty	HOD
Sign: Name:	(The	ianan tan.	M.Sathya
Signe		Paren by	Agaz
51		epared by	Dayscholar Verified by
57	732424104118	Yuvashri.S	Dayscholar
56	732424104117	Yogalakshmi.G	Dayscholar
54	732424104110	Vinthia Varshini.S	Hostel
53	732424104115	Vinthia varshini.S	Dayscholar
52	732424104114	Vignesh. R. K	Hostel
51	732424104114	Vignesh.M	Dayscholar
50	732424104112	Vidhyavarshini.M	
49	732424104112	Venkatraj.R	Dayscholar Hostel
48	732424104103	Velusamy.M	Dayscholar
47	732424104109	Varshini. N	Dayscholar
46	732424104107	Thirumurugan.M	Dayscholar
44	732424104105	Thenmozhi. M	
43	732424104105	Tharunkumar.K	Hostel
42	732424104104	Swetha.V	Hostel
41	732424104103	Suthishna.S	Dayscholar
40	732424104102	Sujith.S	Dayscholar
39	732424104101	Stephy Rose Manna.A	Hostel
38	732424104100	Srishanth.K	Hostel
37	732424104099	Sriram.K	Hostel
36	732424104099	Sriharishma.R	Hostel
35	732424104090	Sowmiya.M	Dayscholar Dayscholar
34	732424104095	Sowmiya.B	Dayscholar
33	732424104094	Soundarya.S.T	Dayscholar
32	732424104093	Shyam Siddharth.S Sidharsan.M	Dayscholar
31	732424104092	shamprasanth.S	Hostel
29 30	732424104091 732424104092	Shalika.S	Dayscholar
28	732424104090	Senthamizh_J	Dayscholar

and the second

SUBJECT INFORMATION RECORD

Department	: COE
Subject	: Matrices and Calculus.
Year	: <u>T</u>
Semester	: I
Last year handled by	: N. Sharanya
Percentage of Result (last year)	: 93%,
Quality Objectives	to develop The cyc of Matimi algosson techniques that is needed by Engineers for Prostical applications
Reference Book	: 1. Anton, H. Bivens I and Davis S. " (alculus" wiley, 10th Edition 2016. 2. Narayanan. S and Mani cava chagan pillar " (alculus" Volume I and Volume II 3. Ramang. B.V. "Higher Engineering mathematic

	Prepared By	Approved By
Sign:	GE	M. Blev
Name:	G. Joanan Can	M. Sathye
	Faculty	нор

MATRICES AND CALCULUS

MA3151

3 1 0 4 COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that are needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT I MATRICES

Eigenvalues and Eigenvectors of a real matrix - Characteristic equation - Properties of Eigenvalues and Eigenvectors - Cayley - Hamilton theorem - Diagonalization of matrices by orthogonal transformation - Reduction of a quadratic form to canonical form by orthogonal transformation - Nature of quadratic forms - Applications : Stretching of an elastic membrane.

UNIT II DIFFERENTIAL CALCULUS

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation -Applications : Maxima and Minima of functions of one variable.

UNIT III FUNCTIONS OF SEVERAL VARIABLES

Partial differentiation - Homogeneous functions and Euler's theorem - Total derivative - Change of variables - Jacobians - Partial differentiation of implicit functions - Taylor's series for functions of two variables – Applications: Maxima and minima of functions of two variables and Lagrange's method of undetermined multipliers.

UNIT IV INTEGRAL CALCULUS

Definite and Indefinite integrals - Substitution rule - Techniques of Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals - Applications: Hydrostatic force and pressure, moments and centres of mass.

MULTIPLE INTEGRALS UNIT V

Double integrals - Change of order of integration - Double integrals in polar coordinates - Area enclosed by plane curves - Triple integrals - Volume of solids - Change of variables in double and triple integrals - Applications: Moments and centres of mass, moment of inertia.

TOTAL:60PERIODS

COURSE OUTCOMES:

At the end of the course the students will be able to CO1:Use the matrix algebra methods for solving practical problems. CO2: Apply differential calculus tools in solving various application problems. CO3: Able to use differential calculus ideas on several variable functions. CO4: Apply different methods of integration in solving practical problems.

9 + 3

9+3

9 + 3

9 + 3

9+3

CO5:Apply multiple integral ideas in solving areas, volumes and other practical problems.

TEXT BOOKS:

1. Kreyszig.E, "Advanced Engineering Mathematics", John Wiley and Sons,

10th Edition, New Delhi, 2016.

- 2. Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition , 2018.
- James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015. [For Units II & IV Sections 1.1, 2.2, 2.3, 2.5, 2.7 (Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 7.4 and 7.8].

REFERENCES:

- 1. Anton. H, Bivens. I and Davis. S, "Calculus", Wiley, 10th Edition, 2016
- 2. Bali. N., Goyal. M. and Watkins. C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- 3. Jain. R.K. andlyengar. S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 5th Edition, 2016.
- 4. Narayanan. S. and Manicavachagom Pillai. T. K., "Calculus" Volume I and II, S. Viswanathan PublishersPvt. Ltd., Chennai, 2009.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
- 6. Srimantha Pal and Bhunia. S.C, "Engineering Mathematics" Oxford University Press, 2015.
- 7. Thomas. G. B., Hass. J, and Weir. M.D, "Thomas Calculus ", 14th Edition, Pearson India, 2018.

	Real and a second	FU3	P04	P05	P06	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
3	3	1	1	0	0	0	0	2	0	2	3	_	-	-
	3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 Jours 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 3 1 1 0 0 0 0 2 0 3 3 1 1 0 0 0 0 2 0 3 3 1 1 0 0 0 0 2 0 3 3 1 1 0 0 0 0 2 0 3 3 1 1 0 0 0 2 0 3 3 1 1 0 0 0 2 0 3 3 1 1 0 0 0 2 0	3 3 1 1 0 0 0 0 2 0 2 3 3 1 1 0 0 0 0 2 0 2 3 3 1 1 0 0 0 0 2 0 2 3 3 1 1 0 0 0 0 2 0 2 3 3 1 1 0 0 0 0 2 0 2 3 3 1 1 0 0 0 0 2 0 2 3 3 1 1 0 0 0 0 2 0 2 3 3 1 1 0 0 0 2 0 2	3 3 1 1 0 0 0 0 2 0 2 3 3 3 1 1 0 0 0 0 2 0 2 3 3 3 1 1 0 0 0 0 2 0 2 3 3 3 1 1 0 0 0 0 2 0 2 3 3 3 1 1 0 0 0 2 0 2 3 3 3 1 1 0 0 0 2 0 2 3 3 3 1 1 0 0 0 2 0 2 3	3 3 1 1 0 0 0 0 2 0 2 3 - 3 3 1 1 0 0 0 0 2 0 2 3 - 3 3 1 1 0 0 0 0 2 0 2 3 - 3 3 1 1 0 0 0 2 0 2 3 - 3 3 1 1 0 0 0 2 0 2 3 - 3 3 1 1 0 0 0 2 0 2 3 - 3 3 1 1 0 0 0 2 0 2 3 -	3 3 1 1 0 0 0 0 2 0 2 3 - - 3 3 1 1 0 0 0 0 2 0 2 3 - - 3 3 1 1 0 0 0 0 2 0 2 3 - - 3 3 1 1 0 0 0 2 0 2 3 - - 3 3 1 1 0 0 0 2 0 2 3 - - 3 3 1 1 0 0 0 2 0 2 3 - - 3 3 1 1 0 0 0 2 0 2 3 - -						

CO's-PO's & PSO's MAPPING

1 - low, 2 - medium, 3 - high, '-"- no correlation

	ACCEPTION (Accredited by NAC, Under 21 and 12B status)	NG			
	LESSON PLAN				and the state of t
aculty Name Department	: G.Jeevanani'am : CSE			nation: Assistant Profess ster/ Year: 1 & 1	or
ubject / Code	: Matrices and Calculus		ot inte	ster real. r & r	
cademic Year	: 2024-2025				
S.No. Proposed	Details of Topic Covered	ТА	Ref.	Actual	Remar
Date Peri	unit-i -MATRICES		I. I.	Date Period	Remark
1 10			1.	10.0	1
2 19 00	Gen.	-		13724 112	
3 0 0 24 7	Properties of Eigenvalues and Eigenvectors		1	1107,24	
100120 31	Properties of Eigenvalues and Eigenvectors	1	1	2001.24 38	
1 20.9,20 6		1	1	21.09.24 6	
5 2107.24 5	Diagonalization of matrices by orthogonal transformation	1	1	2307.24 5	
· 2209.29 4	Diagonalization of matrices by orthogonal transformation	1	1	24.09.24 4.6	
7 24 7. 4 3	Reduction of a quadratic form to canonical form by orthogonal transformation	1	2	25-9924 3,4	
* 250724 3	Reduction of a quadratic form to canonical form by orthogonal transformation	I	2	23 9-24 3,4	-
° 26. 924 .	Nature of quadratic forms	1	2	26-09-24 7	
10 27 57. 44	8 Nature of quadratic forms	1	2	2709,24 3,8	
11 2807.24	La Applications Stretching of an elastic membrane	1	2	2209.24 6	
12 20.09.24	Applications Stretching of an elastic membrane	I	2	30-9.24 5	
	UNIT II - DIFFERENTIAL CALCULUS			13-11-1-5	1
13 01100v C	Representation of functions	1	2	11024 41	1
14	Representation of functions	1	2	3.10.24 7	
15 10.24	Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules)		2		
16 04.10.44	Limit of a function Contaction Definition of the state of			4.10.24 318	
17 05.10.14	Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules)		2	05.10.29 6	
18 07.1027		1	3	0/1029 5	
01.10.24	5 Implicit differentiation	- 1	3	07.1029 >	
1º 0210'24' 11			3	02.10.24 (1	2
20 09,1024	Logarithmic differentiation		3	091024 7	
21 14.10-44		1	3	14.10-24 318	
22 151024	b Logarithmic differentiation	1	3	15/024 6	
23 15.1224	5 Applications: Maxima and Minima of functions of one variable	1	3	15/224 5.	
24 161024	y CApplications Maxima and Minima of functions of one variable	1	3	16:10:24 46	
1	UNIT III - FUNCTIONS OF SEVERAL VARIABLES			in page 1	
25 17,1024	3,4 Partial differentiation	1	4	11024 3,4	
26 15-10.24	Homogeneous functions and Euler's theorem	1	4	21.8 1950121	
27 19.10-24	Homogeneous functions and Euler's theorem	1	4	P(1)(2) 6	
28 9110-24 3	G Total derivative - Change of variables - Jacobians	1	4	11 24 2.1	
21 20 20 20 3	4 Total derivative - Change of variables - Jacobians	1	4		
30 22.1024 5	U Total derivative - Change of variables - Jacobrans	1	+	22. 0.24 311	1
31 0 11 4 20	7 Partial differentiation of implicit functions	1	1	22.10.24 314	
32 -910-97	Partial differentiation of implicit functions			25,10.24 318	
13 0 10 29	The lock one of the streng of the second law	1	5	2610-24 6	
2010-04		1	5	28:1027 46	
34 28.1024 9	b Taylor's series for functions of two variables Applications: Maxima and minima of functions of two variables and Lagrange's	1	*	29.1024 31	1
35 29,1024 3	and another mined multipliers	1	5	29,1029 31	
36 04.1124 4	Applications Maxima and minima of functions of two variables and Lagrange's method of undetermined inaltipliers	1	5	011024 4,6	
· /	UNIT IV - INTEGRAL CALCULUS				h
37 05.11.24 31	U Definite and Indefinite integrals - Substitution rule	1	2	Fullow Sale	1
38 of 11.24 h	2 Definite and Indefinite integrals - Substitution rule	1	2	Lunpre	
31 01.11.24	Techniques of Integration Integration by parts Trigonometric integrals	1	2	AU 21 12	1
10 1.11.29 3	Techniques of Integration Integration by parts. Frigonometric integrals			11.24 7	

41 091K	46	Techniques of Integration. Integration by parts Trigonometric integrals		2	9.1224
42 M.11.2	1 2,4	Trigonometric substitutions. Integration of rational functions by partial fraction	ł	2	1.1.24 214
43 12.11-24			I	5 1	9.11.24 1.2
44 19.1/24	7	Trigonometric substitutions. Integration of rational functions by partial fraction	1	5	3/1/24 1
45 141/20		Integration of irrational functions	1	5	4.124 3.0
46 15-11.2		Improper integrals	1	5	511-24 4.6
47 110-11-2	17	Applications. Hydrostatic force and pressure, moments and centres of mass	1	5 1	0111.24 7
48 R.1.2	thib	Applications Hydrostatic force and pressure, moments and centres of mass	I	5	0.11/24 26
	191	UNIT V - MULTIPLE INTEGR	ALS		
49 11.11.24	3,4	Double integrals - Change of order of integration	- I	1	7.124 314
50 2011,2	112	Double integrals in polar coordinates	1	1 9	all-24 1.2
51 22.11.2	4 7	Double integrals in polar coordinates	1		22.11.24 7
52 23.11.2	138	Double integrals in polar coordinates	I		3.11/24 3.8
53 25.11.2	4 201	OArea enclosed by plane curves	1		5-11-24 416
54 26.11-2		Area enclosed by plane curves	1	2	B.1/24 314
55 07.11.2	1/12	Iriple integrals - Volume of solids	1	2 2	7.1424 1.2
56 201h2		Triple integrals - Volume of solids	1		Pillen T
57 99.11.24		Change of variables in double and triple integrals	1		711-24 318
58 20.11.2		Change of variables in double and triple integrals	1	2	0,11/24 6
59 02-12-2		Applications Moments and centres of mass, moment of inertia	1	2	212024 3,8
60 03.12-2	yab	Applications Moments and centres of mass, moment of inertia	1	2 0	3-12.24 4,6
xt books :	1).				

C

1 2 3

Jonkš; '1) Kreyszig E. "Advanced Engineering Mathematics", John Wiley and Sons.10th Edition, New Delhi, 2016 Greval B.S. "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition. 2018 James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015 [For Units II & IV - Sections I.1. 22, 23, 25, 27 (Tangents problems only), 28, 31 to 36, 311, 41, 43, 51 (Area problems only), 52, 53, 54 (excluding net change theorem), 55, 71 - 74 and 78]

.

Reference books (Ref):
 Anton H. Bivens 1 and Davis S. "Calculus". Wiley, 10th Edition, 2016
 Narayanan S and Manicayachagom Pillai, T.K., "Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.
 Ramana B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd., New Delhi, 2016.
 Thomas G.B., Hass J, and Weir M.D., "Thomas Calculus", 14th Edition, Pearson India, 2018.

- Teaching Aids (TA): 1 Black Board with Chalk 2 Overhead Projector 3 LCD Projector

Prepared by Verified by Authorized by Ā A 00 ien 5 me Faculty HOD Principal

TEST PLAN FOR SUBJECT

subject : Matrices and Calculus Faculty: G. Jeauanan Ram.

Semester : I

Year: I

Department : CST

S. No.	Description	Planned Date/Month	Actual Conducted Date / Month	Remarks
١	Internal Examination-I	12.11.24	12.11.24	Mangalance .
2.	Internal Examination-TT	27.11. 24	27.11.24	and the second se
3.	Mode Examination	11.12.24	11.12.24	- Andrew Contraction of the International Science of the International Sci
		-		

	Prepared By	Approved By
Sign:	GE	H.BIAN
Name:	Geranan tam.	N. Sathya
	Faculty	HoD

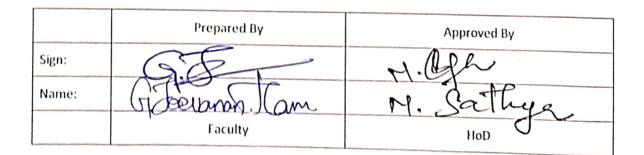
RESULT ANALYSIS OF TEST					
subject : Matrices and Calc	ulu.	Date : 13.11.24			
Class : I DeC-B.		Department : CSE			
Semester : I		1. 5 19.11.24			
Exam details & date	: Internal D	numination_) location.			
Faculty	: G. Jeelan	ramination I, 12.11.24.			
Number of students	: 55				
No. of students attended	: 54				
No. of students absent	: 0)				
No. of students passed	: 08				
No. of students failed	- 40				
Percentage of failures	83%				

RESULT DATA:

0

Marks	0-25	26-50	51-75	76-90	91-100
No. of Students	28	18	10	- 4	- to formation

	Prepared By	Approved By
Sign:	GE	N.BER
Name:	GJeerman Jam.	N. Sathya
	Faculty	HoD


CORRECTIVE ACTION REPORT

Department	:	CSE
Year	: .	T
Semester	:	T

Subject

: Matrices and Calculus.

NON CONFORMANCE REPORT facult 100% and received 17% Result Date: 3.1.24 ROOT CAUSE ANALYSIS They did mistake in formulas and stepinite active Sign Date: CORRECTIVE ACTION Je grean imposition for the students Date: 13.11. 24 y Sign VERIFICATIO Voriginal Date: 13/11/2024 **Faculty Sign**

RESULT ANALYSIS OF TEST				
subject : Matrices and Cal	culey	Date: 28.11,2024,		
Class : I See B.		Department : CSE		
Semester : I		1		
Exam details & date	: Internal EX	$aun's nation \underline{m}_{1} \ge 1.11.0 = 7.$		
Faculty	: G. Jeouanant	unination II, 27.11.2024. Hourn.		
Number of students	: 55			
No. of students attended	: 48			
No. of students absent	: 07			
No. of students passed	: }			
No. of students failed	: 37			
Percentage of failures	: 775			

RESULT DATA:

Marks	0-25	26-50	51-75	76-90	91-100
No. of Students	. 16	21	0)	

	Prepared By	Approved By
Sign:	GE	MOR .
Name:	G Baanan Cam.	M. Sathya
	Faculty	HoD

CORRECTIVE ACTION REPORT

Department : CSE Year : I	ę
Semester : I	
Subject : Matrices and Calculus.	
NON CONFORMANCE REPORT Expected Result 100 y. and received, 23 y. result.	,
Date: 28/1.2024 Faculty Sign	_
They did mistake in formulas and steps.	
Date: 28.11-2094 Faculty Sign	_
CORRECTIVE ACTION	
Togive an Assignment.	
Date: 28-11.2024 VERIFICATION OF CORRECTIVE ACTION	
Verified	
Date: 28/11/2027 Faculty Sign	a *

	Prepared By	Approved By
Sign:	GE	H. Offer
Name:	G. Jeovanan tom.	N. Sathya
	Faculty	HoD U

RESULT ANALYSIS OF TEST											
subject : Matrices and	Calculus Date: 14,12,2024.										
Class : I See B.	Department : CJE.										
Semester : I	Model Examination I, 11.12, 2024										
Exam details & date	Model Examination 1, 11,12)										
Faculty	: Grifeevanin Cam.										
Number of students	: 55										
No. of students attended	: 46										
No. of students absent	: 09										
No. of students passed	: 15										
No. of students failed	: 31										
Percentage of failures	: 67										

RESULT DATA:

Marks	0-25	26-50	51-75	76-90	91-100	
No. of Students	10	23	09	03	01	

	Prepared By	Approved By
Sign:	GEP	magine (000)
Name:	G Leoranan Cours.	Play fully
	Faculty	HoD

CORRECTIVE ACTION REPORT

Department : CDE	
Year : T	k
Semester : I	
subject : Matrices and Calculuy.	
NON CONFORMANCE REPORT	Ν
Expected Result D 1007. Rece 331. Result	ived
33 N. Result	AE
Date: 14.12.2024	Faculty Sign
They did Mistalge in Methods and 7	osmular
Date: 14,12,2024 CORRECTIVE ACTION	Factility Sign
TO given an Imposition.	00
	Œ
Date: 4.12 Day	Faculty Sign
VERIFICATION OF CORRECTIVE ACTION	
Neutred	0000
	H.Sh
Date:	Faculty Sign

	Prepared By	Approved By					
Sign:	GE-	N. Saffya (18/0)					
Name:	A. Lewanon Tam	Ju sp					
	Faculty	HoD					

QUALITY OBJECTIVE MONITORING RECORD

Department : CSE

I :

Year

Semester

Subject

Subject

: I Matrices and Calculus.

	Quality Objective	Interna	l Test-I	Internal	l Test-ÌI	Model Test-I		
S.No		Expecting result	Obtained result	Expecting result	Obtained result	Expecting Result	Obtained result	
١.	Todeveloprtheese of Matris, algebra teelunguestatis heeded by Engineers tos Pradinal Applications.	1007	177	1007-	23%	1007.		

	Prepared By	Approved By	
Sign:	GP-	0182/	
Name:	A. Leevanan tem.	N	
	Faculty	HoD	

ACADEMIC YEAR :2024-2025 YEAR & SEM : Ι/Ι DEPARTMENT :I CSE SUBJECT & CODE : MATRICES AND CALCULUS (MA3151) NAME OF THE FACULTY : GJEEVANANTHAM

DATE: 08.11.2024

								MAT	RICES A	ND CALC	ULUS			
S.No	Register Number	Name	Total number of hours	Attended hours		Slip Test- I	Slip Test- II	Slip Test- III	B -I(20)	B-II (20)	B MARK TOTAL (40)	MARKS(60)	ASS(40)	TOTAL (100)
1	732424104062	Mathavan.V	45	35	19	13	19	AB	13	19	32	48	38	86
2	732424104063	Merlin jenisha Mery.M	45	44	19	12	18	14	14	18	32	48	38	86
3	732424104064	Methini.L	45	41	19	9	8	AB	9	8	17	26	38	64
4	732424104065	Mohammad Fayaz.S	45	41	18	11	4	AB	11	4	15	23	36	59
5	732424104066	Mohammed Suhail.S	45	44	19	15	9	8	15	9	24	36	38	74
6	732424104067	Monisha.N.P	45	40	19	13	13	19	13	19	32	48	38	86
7	732424104069	Nathiya.R	45	40	19	14	17	AB	14	17	31	47	38	85
9	732424104070	Naveenkumar.R	45	30	17	AB	AB	AB	0	0	0	-+7	34	34
8	732424104071	Nivetha.P	45	41	19	17	11	19	17	19	36	54	38	92
10	732424104072	Pradeepa. L	45	40	19	16	19	AB	16	19	35	53	38	92
11	732424104073	Prapcena.B	45	38	19	14	7	19	14	19	33	50		
12	732424104074	Prema.K	45	41	19	18	14	18	18	19	36		38	88
13	732424104075	Priyadharsan.V	45	40	19	14	16	AB	14			54	38	92
14	732424104076	Ragul.O	45	35	19	11	6	16		16	30	45	38	83
15	732424104077	Ragul.R	45	38	18	. 9	5	6	11	16	27	41	38	79
16	732424104078	Rajapriyan.K	45	37	18	11	17		9	6	15	23	36	59
		July and a	15	57	19	11	17	14	17	14	31	47	38	85

the second se

													Nigeral Street		
17	732424104079	Sabarinathan, K	45	41	19	17	10)	1	Γ	1		98. 1	
18	732424104080	Sabarish.V	45	40	19	2	19	15	19	17	36	54	38	92	
20	732424104081	Sanjay.M	45	40	19	9	5	9	5	9	14	21	38	59	1 235
19	732424104082	Sanjay Kumar.R	45	40	19	7	7	AB	9	7	16	24	38	62	
21	732424104083	Sanmathi.S	45	44	19	14	17	11	7	11	18	27	38	65	
22	732424104084	Sanofar. M	45	41	19	14	7	13	14	17	31	47	38	85	
23	732424104085	Santhiya.S.V	45	37	19	16	6	19	10	19	29	44	38	82	
24	732424104086	Sarathi.G	45	40	17	16	4	13	16	13	29	44	38	82	-
25	732424104087	Saravanan. M	45	37	19	11	9	8	16	8	24	36	34	70	
26	732424104088	Sarmitha.P.V.K	45	41	19	16		9	11	9	20	30	38	68	
27	732424104089	Sasvitha. S	45	38	19	11	19 18	20	19	20	39	59	38	97	
28	732424104090	Senthamizh.J	45	38	19	10	7	18	18	18	36	54	38	92	
29	732424104091	Shalika.S	45	41	19	15	14	16 AB	10	16	26	39	38	77	and the second se
30	732424104092	shamprasanth.S	45	41	19	7	5	AB	15	14	29	44	38	82	
31	732424104093	Shyam Siddharth.S	45	24	19	AB	AB	AB	0	5	12	18	38	56	
32	732424104094	Sidharsan.M	45	38	19	11	12	13		0	0	0	38	38	
33	732424104095	Soundarya.S.T	45	42	17	14	12	AB	12 14	13	25	38	38	76	
34	732424104096	Sowmiya.B	45	42	19	9	5	14	9	16	30	45	34	79	
35	732424104097	Sowmiya.M	45	45	19	18	18	14	18	8	23	35	38	73	
36	732424104098	Sriharishma.R	45	35	19	15	19	12	15		26	39	38	77	
37	732424104099	Sriram.K	45	29	17	6	3	AB	6	19	34	51	38	89	
38	732424104100	Srishanth.K	45	44	19	12	7	11		3	9	14	34	48	
39	732424104101	Stephy Rose Manna.A	45	40	19	16	19	19	12	11	23	35	38	73	
40	732424104102	Sujith.S	45	41	19	8	7	6	8	19	38	57	38	95	
41	732424104103	Suthishna.S	45	34	19	12	8	11	12	7	15 23	23	38 38	61 73	

the start and the second s

42	732424104104	Swetha.V	45	44	19					1	1			
43	732424104105	Tharunkumar.K				16	19	20	19	20	39	59	38	97
44			45	40	19	6	2	10	6	10	16	24	38	62
	732424104106	Thenmozhi. M	45	40	17	6	5	AB	6	5	11	17	34	
45	732424104107	Thirumurugan.M	45	37	17	9	8	10	9	10				51
46	732424104109	Varshini. N	45	41	19	15					19	29	34	63
47	732424104111	Velusamy.M					17	15	15	17	32	48	38	86
48			45	41	19	14	7	17	14	17	31	47	38	85
	732424104112	Venkatraj.R	45	31	18	3	0	5	3	5	8	12	36	48
49	732424104113	Vidhyavarshini.M	45	35	17	AB	4	AB	4	0	4			
50	732424104114	Vignesh.M	45	39	18	5	5					6	34	40
51	732424104115	Vimalesh. R. K	45					6	5	6	11	17	36	53
52	732424104116			44	19	16	18	17	17	18	35	53	38	91
		Vinthia varshini.S	45	. 44	19	17	17	20	17	20	37	56	38	94
53	732424104117	Vishal.M	45	41	15	14	AB	13	14	13	27	41		
54	732424104118	Yogalakshmi.G	45	44	19	AB	8	13					30	71
55	732424104118	Yuvashri.S	45						8	13	21	32	38	70
		1 47431111.0	43	41	19	14	13	AB	14	13	27	41	38	79

	Prepared by	Verified by	Approved by
Sign	02/11/2024	H. Ale Allory	1 million
Name	G.JEEVANANTHAM	M.SATHYA	Dr. M. Vilanahuman
	Faculty	HoD	Dr.M.Vijayakumar Principal

SASURIE NATITUTIONS SASURIE Vijavamangalam, Tiruppur. Set : B										
	Inter	rnal Examina	tion - I	Date/Session	12.11.24/FN N	Aarks 50				
Course code		MA3151	Course Title	MATRICES AND CALCULUS						
Regulati	on	2021	Duration	1.30 Hours	Academic Year	2024-2025				
Year		I	Semester	I	Department	Common to all Branch				
COURS	EOU	TCOMES								
CO1:			ebra methods fo							
CO2:					us application pro					
CO3:	Ab	le to use differe	ential calculus ic	leas on several	variable functions					
CO4:	Ap	ply different me	ethods of integra	ation in solving	g practical problem	15.				
Ć05:	Ap	ply multiple int	egral ideas in sc	lving areas, vo	olumes and other p	ractical				
	-	blems.	2							

(5

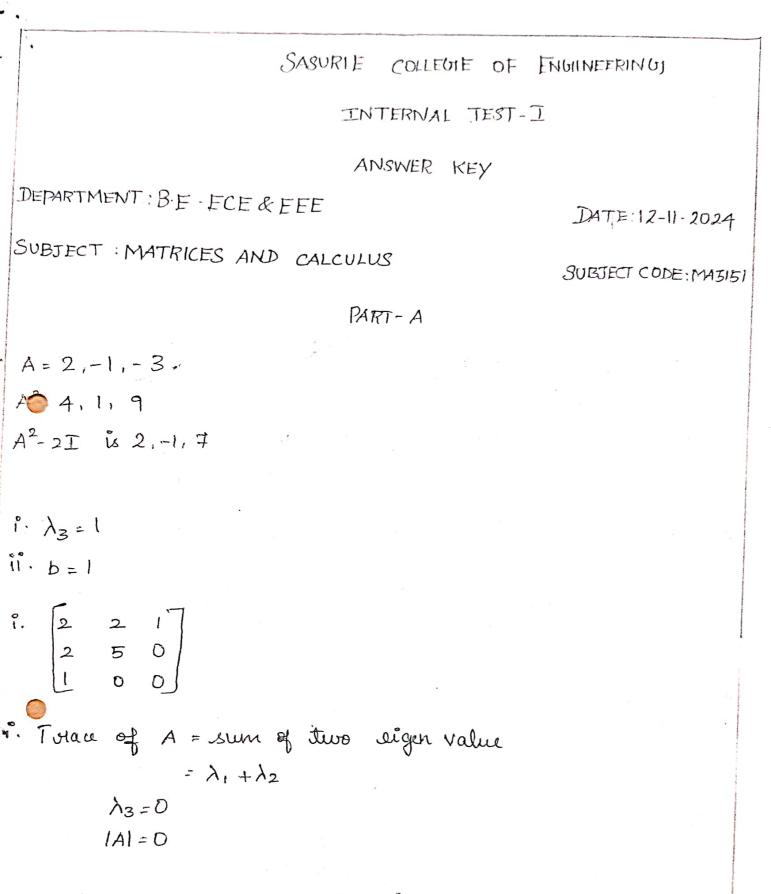
Usep

102

Q.No.	Questions	CO	BTS
	PART A (Answer all the Questions $10 \ge 20$ Marks)		
	If 2,-1,-3 are the Eigen value of the matrix A, then find the	C01	U
1	Eigen value of $A^2 - 2I$.		
2	If 2 and 3 are the two eigenvalues of $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ b & 0 & 2 \end{pmatrix}$ then find the value of b.	CO1	A
3	Write down the matrix corresponding to the quadratic form $2x_1^2 + 5x_2^2 + 4x_1x_2 + 2x_3x_1$.	CO1	R
4	If the sum of two Eigen values and trace of a 3x3 matrix A are equal, find the value of A .	CO1	U
5	Find the Eigenvalues of the matrix $\begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.	CO1	U
6	Find the derivative $y = (x^3-1)^{100}$	CO2	U
7	check whether $\lim_{t \to 1} \frac{3x+9}{ x+3 }$ exists	CO2	R
8	Find the critical points of $y = 5x^3 - 6x$	CO2	A

2

	State Mean value theorem	CO2	R
0	Evaluate the limit for $\lim_{x \to -2} \frac{x+2}{x^5+8}$	CO2	A
	Evaluate the limit for $x - x + s$	1	
	(Answer all the Questions 2 x 15 =30 Marks) i) Find the Eigen values and Eigen vectors for the matrix $\begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$ ii) Verify the Cayley-Hamilton theorem and also find A ⁴ for $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ the matrix $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$	CO1	U
	the matrix $\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$ OR		
11b	Reduce the quadratic form into the canonical by using orthogonal transform $6x^{2}_{1}+3x^{2}_{2}+3x^{2}_{3}-4x_{1}x_{2}-2x_{2}x_{3}+4x_{3}x_{1}$ and also find Rank, signature, Index	CO1	E
12a	i) Find an equation of the tangent line to the hyperbolay = $4x - 3x^2$ at (3,1) ii) If $f(x) = \sqrt{x}$ find $f^{11}(x)$	CO2	A
	OR		1
12b	i) Determine whether $f'(0)$ exist or not for the given function	CO2	R
	$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) , x \neq 0 \\ 0 , x = 0 \end{cases}$ ii) Find the domain at which the function continuous and		


HoD Shipowy.

Principal

Course Faculty P.Sivoranjum (Mrs.P.Sivaranjani)

(Mrs.M.Sathya)

(Dr.M.Vijayakumar)

i. The characteristic equation $A^3 - s_1 \lambda^2 + s_2 \lambda - s_3 = 0$ ii. $s_1 = 7$ ii. $s_2 = 0$ v. $s_3 = -3b$ · $\lambda = 3, 6, -2$

1.
$$y'_{=100}(x^{3}-1)^{97}(3x)^{2}$$

if. $y'_{=100}(x^{3}-1)^{97}(3x)^{2}$
if. $y_{=10}(x^{2}-1)^{97}$
if. $y'_{=10}(x^{2}-1)^{19}$
if. $y''_{=10}(x^{2}-1)^{19}$
if. $y''_{=10}(x^{2}-1)$

Vi. The eigen vector for
$$\lambda = 6$$
 is $\begin{bmatrix} 2\\ 1\\ -2 \end{bmatrix}$
Vii. The eigen vector for $\lambda = 3$ is $\begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix}$
i. The characteristic equation are $[\Lambda - \lambda I] = 0$.

1. The characteristic equation are
$$|A - \lambda I|$$

i.e. $\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$.
11. $S_1 = 1 + 2 + 3 = 6$
11. $S_1 = 1 + 2 + 3 = 6$
11. $S_2 = 5 + 2 - 2 = 5$
11. $S_3 = 5 - 10 = -5$
12. $A^3 - 6A^2 + 5A + 5I = 0$.
13. $A^2 = \begin{bmatrix} 6 & 7 & 6 \\ 7 & q & 4 \\ 6 & 7 & 11 \end{bmatrix}$
14. $A^2 A = \begin{bmatrix} 26 & 32 & 31 \\ 32 & 3q & 37 \\ 31 & 37 & 46 \end{bmatrix}$

viii Hence Cayley Hamilton theorem is vougied. ix. A⁴=[121 147 151] 147 179 182 151 182 206]

i.
$$y' = 4 - 6x$$

ii. $y' = -14$.
ii. To find the tangent equation is $(y-y_1) = m(x-x_1)$.
 $y = -14x + 4.3$.
i. The tangent equation of the point $(3, 1)$.

a.
If
$$r = p'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

ii. $ip'(x) = \lim_{h \to 0} \left(\frac{\sqrt{x} + h - \sqrt{x}}{h} \times \frac{\sqrt{x} + h + i\sqrt{x}}{\sqrt{x} + h + i\sqrt{x}} \right)$
iii. $f(x) = \lim_{h \to 0} \frac{\sqrt{x} + h - \sqrt{x}}{h} \times \frac{\sqrt{x} + h + i\sqrt{x}}{\sqrt{x} + h + i\sqrt{x}}$
iii. $f(x) = \frac{1}{2} - \frac{1}{2}$
ii. $S_1 = 12$
iii. $S_1 = 12$
iii. $S_2 = 3b$
N. $33 = 32$
N. The uigen Values are $\lambda = 8, 5, 2$.
N. The uigen Vector of $\lambda = 3$ is $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$
vii. The eigen Vector of $\lambda = 2$ is $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$
viii. The eigen Vector of $\lambda = 2$ is $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$
ix. $D = NTAN = \begin{cases} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{cases}$
N. $C = \gamma TDY = 8y_1^2 + 2y_2^2 + 2y_3^3$
XI. Index (P) = 3
XII. Rank (*) = 3
XII. Signature $= 2p - 7$
 $= 6 - 3$
 $= 3$.

					gister nber:				
		SASURIE -		SUR of Engine	ERING				
In	ternal	Examinati	ion - II	Date/Session	27.11.2024/ FN	Marks	50		
Course code MA3151 Course Title			MATRICES AND CALCULUS						
Regula	tion	2021	Duration	1.30 Hours	Academic Year	2024-2025			
Year		Ì	Semester	I	Department	Common to All Brancho			
COUR	SE O	UTCOMES		Some markster					
CO1:				thods for solvin					
CO2:	prob	Apply differential calculus tools in solving various application problems.							
CO3:				culus ideas ón s					
CO4:		V		fintegration in			ns.		
CO5:		y multiple tical proble	-	as in solving ar	eas, volumes a	and other			

185

÷x.

Q.No.	Questions	C0	BTS
÷.	PART - A (Answer all the Questions 10 x 2 = 20 Marks)		
1	If $y = x \log(\frac{x-1}{x+1})$, then find $\frac{dy}{dx}$.	CO2	R
2	Prove that $\lim_{x\to 0} \frac{ x }{x}$ does not exist.	CO2	R
3	Find the slope of the circle $x^2 + y^2 = 25$ at (3,-4).	CO2	E
4	Evaluate the limit $\lim_{x\to 1} \frac{x^2 - 4x}{x^2 - 3x - 4}$.	CO2	R
5	Find $\frac{\partial^2 w}{\partial x \partial y}$, if $w = xy + \frac{e^x}{y^2 + 1}$.	C03	R
6	Write Euler's theorem on homogeneous function.	CO3	U
7	If $u = x^3 + y^3$ when $x = \cos t$, $y = b$ sint then find $\frac{du}{dt}$.	CO3	R
8	Find the stationary point $f(x, y) = x^2 - xy + y^2 - 2x + y$	CO3	R
9	If $u = \frac{2x-y}{2}$ and $v = \frac{y}{z}$ then find $\frac{\partial(u,v)}{\partial(x,y)}$.	CO3	R

10	Find $\frac{dy}{dx} = x^3 + y^3 = 3axy.$	CO3	R
	PART - B (Answer all the Questions 2 x 15 = 30 Marks)		
11.a	(i) Find the absolute maximum and absolute minimum values of the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 1$ on the interval [-2,3]	CO2	A
	(ii) Find the local maximum and local minimum values of $f(x) = \sqrt{x} + \sqrt[4]{x}$ using first and second derivatives test,	CO2	R
	OR	1	I
11.b	(i) Using Taylor's series, expand $f(x,y) = x^2y + siny + e^x$ up to the second degree terms at the point $(1,\pi)$.	CO2	A
	(ii) If $u = \log (x^2 + y^2 + z^2)$ prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{2}{x^2 + y^2 + z^2}$	CO2	U
12.a	(i) If $u = \sin^{-1}\left(\frac{x^3 - y^3}{x + y}\right)$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan u$.	CO3	U
	(ii) Find the maximum and minimum values of $f(x,y) = x^2 - xy + y^2 - 2x + y$.	CO3	R
	OR		1
12.b	Find the dimensions of the rectangular box without a top of maximum Capacity, whose surface area is 108 sq.cm.	CO3	A

pr Course Faculty

(Mr.G.Jeevanantham)

HoD

Principal (

(Mrs.M.Sathya)

(Dr.M.Vijayakumar)

SASURIE COLLEGIE OF ENGINPERING
INTERNAL TEST -]]
ANSWER KEY
DEPARTMOENT: BE-ECE & EEE
SUBJECT: MATRIKES AND CALCULUS
FART - A.
i.
$$\frac{dy}{dx} = 2 \log\left(\frac{(X-1)}{(X+1)}\right)$$

 \bigvee DV = UV!+VU
 $ii \cdot \frac{dy}{dx} = \frac{\chi^2 + \chi}{(\chi^2 + 1)} + \log\left(\frac{\chi^{-1}}{\chi^{+1}}\right)$
i. $\lim_{X \to 0^{-1}} \frac{-(-1)}{-1} = -1$
 $ii \int_{X \to 0^{-1}} \frac{\chi}{\chi} = \frac{1}{1} = 1$.
 $ii The left unde lemit us not equal to sught stole limit.
 $i \to 0$
 $\frac{1}{\chi} = 0$$

and the second secon

$$\frac{1}{12} \cdot \frac{1}{\sqrt{2}} \frac{du}{dx} + \frac{1}{\sqrt{2}} \frac{du}{dx} = nu$$

ii. z is a homogenous function of degree n at (n, y) .

i. $\frac{du}{dt} = \frac{du}{dx} \frac{dx}{dt} + \frac{du}{dy} \frac{dy}{dt}$.

ii. $\frac{du}{dt} = 3$ using cost $(b^3 \cos t - a^2 \sin t)$.

ii. $\frac{dt}{dt} = 2x - y - 2 = 0 \rightarrow 0$

ii. $\frac{dt}{dx} = -x + 2y + 1 = 0 \rightarrow 0$

iii. $\frac{dt}{dx} = -x + 2y + 1 = 0 \rightarrow 0$

iii. $\frac{dt}{dx} = -x + 2y + 1 = 0 \rightarrow 0$

iii. $\frac{dt}{dx} = -x + 2y + 1 = 0 \rightarrow 0$

iii. $\frac{dt}{dx} = -x + 2y + 1 = 0 \rightarrow 0$

iv. $\frac{dt}{dx} = \frac{du}{dx} \frac{du}{dy}$

iii. $\frac{dt}{dx} = -\frac{1}{2}$

iv. $\frac{dt}{dx} = \frac{2x^2 + 0 - 3ay = 3x^2 - 3ay}{dy}$

iv. $\frac{dt}{dx} = \frac{2y^2 - 3ax}{dy}$

iv. $\frac{dt}{dx} = \frac{2y^2 - 3ax}{dx}$

iv. $\frac{d^2x}{dx} = \frac{d}{dx} (2y^2 - 3ax) = -3a$.

$$PART - B.$$

1. $i' = f'(x) = 12x (x^2 - x - 2)$

11. $f'(x) = 0$

11. $x = 0 \quad x = -1 \quad x = 2$.

11. $f'(x) = 0$

12. $x = 0 \quad x = -1 \quad x = 2$.

13. $F(0) = 3(0)^{1} - 4(0)^{3} - 12(0)^{2} + 1$

 $= +1$

14. $F(-1) = 3(-1)^{4} - 4(-1)^{3} - 12(-1)^{2} + 1$

 $= 3+4-12 + 1$

15. $F(-1) = 3(-1)^{4} - 4(-2)^{3} - 12(-2)^{2} + 1$

 $= 3(16) - 4(8) - 12(4) + 1$

 $= -31$.

11. The intruval cree $[-2, 3]$

11. $f(-2) = 33$

12. $f(x) = (x)^{1/2} + (x)^{1/4}$

13. $f(-2) = 33$

14. $f(x) = \frac{1}{2}x^{\frac{1}{2}-1} + \frac{1}{4}x^{\frac{1}{4}-1}$

15. $f(x) = \frac{1}{2}x^{-\frac{3}{4}}(2x^{1/4} + 1)$

16. $f'(x) = \frac{1}{2}x^{-\frac{3}{4}}(2x^{1/4} + 1)$

17. $f'(x) = \frac{1}{2}x^{-\frac{3}{4}}(2x^{1/4} + 1)$

18. $-\frac{1}{4}x^{-\frac{7}{4}}(4x^{1/4} + 3)$

18. $-\frac{1}{2}x^{-\frac{5}{4}}(4x^{-\frac{1}{4}} + 3)$

18. $-\frac{1}{2}x^{-\frac{5}{4}}(5)$

19. $-\frac{1}{2}x^{-\frac{5}{4}}(5)$

10. $-\frac{1}{2}x^{-\frac{5}{4}}(5)$

11. $-\frac{1}{2}x^{-\frac{5}{4}}(5)$

12. $-\frac{1}{2}x^{-\frac{5}{4}}(5)$

13. $-\frac{1}{2}x^{-\frac{5}{4}}(5)$

14. $-\frac{1}{2}x^{-\frac{5}{4}}(5)$

15. $-\frac{1}{2}x^{-\frac{5}{4}}(5)$

16. $-\frac{1}{2}x^{-\frac{5}{4}}(5)$

17. The Incal Maximum $f''(x) = -4020$

18. $y = y$

19. $y = 17$

19. $y = 17$

10. $y = 17$

10. $y = 17$

10. $y = 17$

11. $y = 17$

11. $y = 17$

12. $y = 17$

13. $y = 17$

14. $y = 17$

15. $y = 12$

16. $y = 12$

17. $y = 17$

17. $y = 17$

ţ

¢

$$\begin{array}{c} \frac{1}{3} & \int_{1}^{1} (y_{1}) = \chi^{2} y_{1} + u \tilde{u} \eta_{1} + e^{\chi} \\ & \tilde{u} + \chi(\alpha_{1}, b) = (1, \pi) \\ & \tilde{u} + \chi(\alpha_{1}, b) = (\chi - 1) \\ & \tilde{u} + \chi(\chi - b) = (\chi - \pi) \\ & \tilde{u} + \chi(\chi - b) = (\chi - \pi) \\ & \tilde{u} + \chi(\chi - b) = (\chi - \pi) \\ & \tilde{u} + \chi(\chi - b) = (\chi - \pi) \\ & \tilde{u} + \chi(\chi - \chi) + e^{\chi} + u \tilde{u} \eta_{1} + e^{\chi} + \chi(\chi - \pi) = 2\pi + e \\ & \tilde{u} + \chi + \chi(\chi - \chi) + e^{\chi} + \chi(\chi - \chi) + \chi(\chi - \chi) = 2\pi + e \\ & \tilde{u} + \chi + \chi + \chi + \chi + \chi + \chi + \chi(\chi - \chi) + \chi(\chi - \chi)^{2} (2\pi + e) + 2(\chi - 1)((\chi - \pi) + \cdots \\ & \tilde{u} + \chi(\chi - \chi)^{2} (\chi - \chi)^{2} (2\pi + e) + \chi(\chi - 1)(\chi - \pi) + 1 \\ & \tilde{u} + \chi(\chi - \chi)^{2} (\chi - \chi)^{2} (2\pi + e) + \chi(\chi - 1)(\chi - \pi) + 1 \\ & \tilde{u} + \chi(\chi - \chi)^{2} (\chi - \chi)^{2} (2\pi + e) + \chi(\chi - 1)(\chi - \pi) + 1 \\ & \tilde{u} + \chi(\chi - \chi)^{2} (\chi - \chi)^{2} (\chi - \chi)^{2} (2\pi + e) + \chi(\chi - 1)(\chi - \pi) + 1 \\ & \tilde{u} + \chi(\chi - \chi)^{2} (\chi - \chi)^{2}$$

$$vi \cdot dT = 0$$

$$vii \quad dE = 0$$

$$dy$$

$$viii \quad dE = 0$$

$$dy$$

$$viii \quad dE = 0$$

$$dz = 0$$

$$xi \cdot y = x$$

$$x \cdot z = \frac{y}{2}$$

$$xi \cdot 3y^{2} = (08)$$

$$xii \cdot y^{2} = \frac{108}{3}$$

$$xii \cdot y^{2} = 36$$

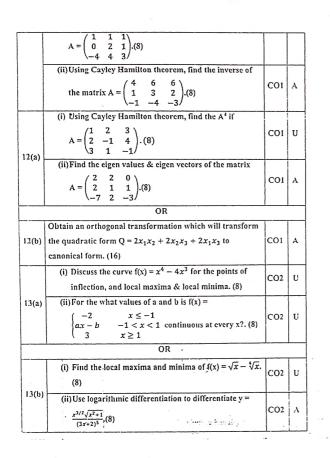
$$xiv \cdot y = 6$$

$$xvi \cdot x = 6$$

$$xv \cdot z = \frac{y}{2} = > \frac{6}{2} = 7.3$$

-

i. xy + 2yz + 2zz = 0. ii. $F(x,y,z) = f(x,y,z) + \lambda f(x,y,z)$ iii. $\frac{dF}{dx} = 2y + 2z - 0$ iv. $\frac{dF}{dy} = 2z + 2y + \lambda yz$ iv. $\frac{dF}{dy} = 2y + 2z + \lambda (xy)$. ii. y = xii. $z = \frac{x}{2}$. iii. $z = \frac{x}{2}$.


				(
			gister nber:					
	, ,	ASURIE	SAS	35 UR FENGINE				
	Mode	l Examinat	ion-I	Date /Session	11.12.2024 /FN	Ma	rks 100	
Course MA3151 Course code Title			MATI	RICES AND	CAL	CULUS		
Regulation 2021 Duration		3 Hours	Academic Y	'ear	Regulation			
Ye	ar	I	Semester	Ide	Departme	nf	Yčar	
COUR		TCOMES						
CO1: Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts								
CO2:	Demonstrate accurate and efficient use of advanced algebraic techniques.							
CO3:		Apply the concept of random processes in engineering disciplines. Understand the fundamental concepts of probability with a thorough						
CO4:	Unde: know phenc							
CO5:					and two dir		cual random	

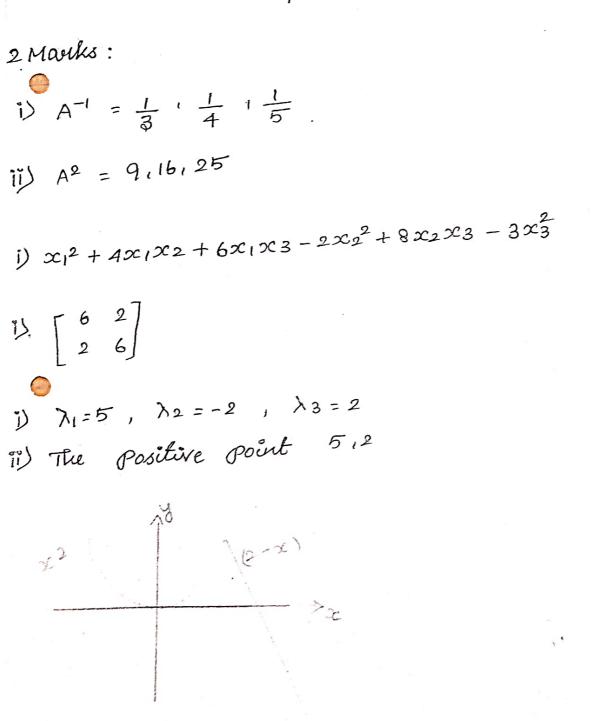
Q.No.	(Ansv		T'A: ons 10 x 2 = 20 Ma	· · · · ·		•••••
		1.111.111.1.1	lump. P		n de	•

÷

1	Find the eigen values of A^{-1} and A^2 if $A = \begin{pmatrix} 3 & 0 & 0 \\ 8 & 4 & 0 \\ 6 & 2 & 5 \end{pmatrix}$.	COI	A
2	Write the quadratic form corresponding to the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -2 & -4 \\ 3 & -4 & -3 \end{pmatrix}$.	COI	U
3	The eigenvalues and the corresponding eigenvectors of a 2 × 2 matrix is given by $\lambda_1 = 8$; $x_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\lambda_2 = 4$; $x_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Find the corresponding matrix.	со1	A
4	Prove that $x^2 - y^2 + 4z^2 + 4xy + 2yz + 6xz$ is indefinite.	C01	U
5	Sketch the graph of the function $f(x) =$ $\begin{cases} x^2 & if -2 \le x \le 0 \\ 2-x & if \ 0 < x \le 2 \end{cases}$	CO2	υ
6	Find the domain of the function $f(x) = \frac{2x^3 - 5}{x^2 + x - 6}$.	CO2	υ
7	Differentiate $y = x \tan(\sqrt{x})$ with respect to x.	CO2	A
8	If $u = x - y$, $v = y - z$, $w = z - x$, then find the jacobian $\frac{\partial(u,v,w)}{\partial(x,yz)}$.	CO3	А
9	If $z = x^2 + y^2$, and $x = t^2$, $y = 2at$, find $\frac{dz}{dt}$.	CO3	U
10	Verify Euler's theorem for the function $u = x^2 + y^2 + 2xy$.	CO3	A
57	PART B		
•	(Answer all the Questions 5*16 = 80 Marks)		
,	Reduce the Quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz +$	1.0	
11(a)	2z x - 2x y to a canonical form by orthogonal reduction	COI	A
	and find the nature, rank, index & signature. (16)		
	OR		
14(b)	(i) Find the eigen values & eigen vectors of the matrix	C01	A
			- 1

(i) Find the equation of the tangent line to the curve CO2 A $y = \frac{e^x}{1+x^2}$ at the point (1, *e*/2). (8) 14(a) (ii) Differential of $(2x + 3)^5 (x^3 - x + 1)$. (8) CO2 A OR (i) If $u = \log (x^2 + y^2 + z^2)$ then find the value of 14(b) CO3 U $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}.$ (8) (ii)Find the maxima & minima for the given function CO3 U $f(x,y) = x^3 y^2 (1 - x - y).$ (8) (i) Expand $e^x \cos y$ in a series of powers of x and y as 15(a) CO3 A far as the terms of the thirds degree. (8) (ii)A rectangular open box at the top is constructed so as have a volume of 108 cubic meters Find the CO3 U dimension of the boxes that require the least material for its construction.(8) OR If $u = sin^{-1} \left(\frac{x^3 - y^3}{x + y} \right)$ the prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ (i) CO3 U 2tan u. (8) 15(b) (ii) Using Taylor's series expansion of the function CO3 $F(x,y) = x^2 y + siny + e^x$ up to the second degree A terms at the point $(1,\pi)$. (8) cincipal (Dr.M.Vijayakumar) ... (Mr.G.Jeevanantham) (Mrs.M.Sathya)

MODEL EXAM - I


ANSWER KEY.

DATE : 11/12/2024

DEPARTMENT : ECE & EEE

SUBJECT CODE : MA3151

PART-A

٢

5.
$$iii (-\infty, -3) \cup (-3, 2) \cup (2100)$$

1. $iii = \sqrt{2} \sqrt{x}$
 $iiii = \sqrt{2} \sqrt{x}$
 $iiii = \sqrt{2} \sqrt{x}$
 $iiii = \sqrt{2} \sqrt{x}$
 $iiii = \sqrt{2} \sqrt{x}$
 $iii = \sqrt{2} \sqrt{x}$
 $iii = \sqrt{2} \sqrt{x}$
 $iii = \sqrt{2} \sqrt{x}$
 $iii = \sqrt{2} \sqrt{x} + 2\sqrt{x}$
 $iv = \sqrt{2} \sqrt{x} + 2\sqrt{$

vi) The Eigen vector of $\lambda = 3$ is $\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$ vii) Rank = 3, signature = 3, Index = 3.

- 4

3 -

$$ii \cdot A^{2} = \begin{bmatrix} 16 & 18 & 18 \\ 5 & 7 & 6 \\ -5 & -6 & -5 \end{bmatrix}$$

$$iii \cdot A^{3} = \begin{bmatrix} 64 & 78 & 78 \\ 21 & 27 & 26 \\ -21 & -28 & -27 \end{bmatrix}$$

$$iii \cdot A^{-1} = \begin{bmatrix} 33 & 42 & 42 \\ 9 & 20 & 14 \\ -9 & -22 & -16 \end{bmatrix}$$

$$S_{1} = 3 , S_{2} = -10 , S_{3} = -4^{2}$$

$$A^{2} = \begin{bmatrix} 14 & 1 & 10 \\ 12 & 7 & 2 \\ 2 & 4 & 14 \end{bmatrix}$$

$$i A^{4} = \begin{bmatrix} 128 & -5 & 154 \\ 204 & 104 & -169 \\ 19 & 64 & 152 \end{bmatrix}$$

in
$$S_1 = 0$$
, $S_2 = -13$, $S_3 = -12$
ii The eigen values are $\lambda = 3, 1, -24$
iii. The eigen vector of $\lambda = 3$ is $\begin{bmatrix} 2\\1\\-2 \end{bmatrix}$
iv. The eigen vector of $\lambda = 1$ is $\begin{bmatrix} 2\\-1\\-4 \end{bmatrix}$
v. The eigen vector of $\lambda = -4$ is $\begin{bmatrix} 2\\-1\\-4 \end{bmatrix}$
i. The eigen vector of $\lambda = -4$ is $\begin{bmatrix} 1\\-3\\13 \end{bmatrix}$

¹² b. î. $S_1 = 7$, $S_2 = 9$, $S_3 = 7$ ii. The eigen values are $\lambda = 3, 1, 1$ iii. The eigen vector of $\lambda = 3$ is $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ iv. The eigen vector of $\lambda = 1$ is $\begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$ v. The eigen vector of $\lambda = 1$ is $\begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$

VI. $c = 3\chi_1^2 + \chi_2^2 + \chi_3^2$

i.
$$f'(x) = \frac{1}{2} x^{\frac{1}{2}-1} - \frac{1}{4} x^{\frac{1}{4}-1}$$

ii. The vertical number $x = \frac{1}{16}$
iii. The foist derivative test $f(\frac{1}{16}) = \frac{1}{4}$
iv. The second durivative test $f(\frac{1}{16}) = 8$

i)
i) i.
$$\frac{dy}{dx} = \frac{\chi^{3/2}}{\sqrt{\pi^2 + 1} (3\pi + 2)^5} \left(\frac{3}{2\pi} - \frac{2\pi}{\pi^2 + 1} - \frac{15(3\pi + 2)}{(3\pi + 2)}\right)$$

i. i. The visitical number $\chi_{=} - 3$, $\chi_{=} 0$
ii The develosing point $(-\infty, -3)(-3, 0)$
iii. The invasing point $(0, \infty)$
N. The invasing point $(0, \infty)$
N. The invasing invarial $(-\infty, 0) u(2, \infty)$

V. The concare downword (0,2)

. The inflection point (0,-16)

vii. Local minimum at 3

$$i \quad i \quad \alpha = \frac{5}{2}$$

 $i \quad b = -\frac{1}{2}$

a
i. slope = 0
ii.
$$y = \frac{2}{2}$$

i. $\frac{d}{dx} \left[(2x+3)^{5} (x^{3}-x+1) \right] = 5(2x+3)^{4} 2(x^{3}-x+1) + (2x+3)^{5} (3x^{2}-1)$

$$\frac{d^{2}u}{dx^{2}} = -\frac{2x^{2} + 2y^{2} + 2z^{2}}{(x^{2} + y^{2} + z^{2})^{2}}$$

$$\frac{d^{2}u}{dy^{2}} = -\frac{2y^{2} + 2z^{2} + 2x^{2}}{(x^{2} + y^{2} + z^{2})^{2}}$$

$$\frac{d^{2}u}{dz^{2}} = -\frac{2z^{2} + 2x^{2} + 2y^{2}}{(x^{2} + y^{2} + z^{2})^{2}}$$

$$\frac{d^{2}u}{dz^{2}} = -\frac{2z^{2} + 2x^{2} + 2y^{2}}{(x^{2} + y^{2} + z^{2})^{2}}$$

$$\frac{d^{2}u}{dz^{2}} = -\frac{2z^{2} + 2x^{2} + 2y^{2}}{(x^{2} + y^{2} + z^{2})^{2}}$$

$$\frac{d^{2}u}{dz^{2}} = -\frac{2z^{2} + 2x^{2} + 2y^{2}}{(x^{2} + y^{2} + z^{2})^{2}}$$

$$\frac{d^{2}u}{dz^{2}} = -\frac{2z^{2} + 2x^{2} + 2y^{2}}{(x^{2} + y^{2} + z^{2})^{2}}$$

ii i Masi wum at
$$(-1, 0) = 2$$

ii Minimum at $(-1, 1) = -4$
ia ii $e^{0} (u_{0} \pi/2) = 0$, $e^{0} (u_{0} \pi/2) = 0$, $-e^{0} in \pi/2 = -1$, $e^{\chi} (u_{0} + y) = 0$,
 $u_{z=-1}$, $e=0$
ii even function $e^{-\pi} = \frac{1}{e^{\chi}}$
iii odal function $y_{\chi} = -\frac{1}{\chi}$
iii i. $F(\chi, y, z) = f(\chi, y, z) + \lambda g(\chi, y, z)$
ii. $\chi = b$ $y = b$ $Z = 3$
iii $\frac{\chi^{2}(1 - \frac{y^{2}\chi_{\chi}}{\chi})}{(1 + y)_{\chi}}$
iii. By euler's theorem, z is an homogenous function of degree -2
 $\pi \frac{dZ}{d\chi} + y \frac{dz}{dy} = nZ$
iv. $\chi \frac{du}{d\chi} + y \frac{du}{dy} = 2 \tan u$
v. Hence Proved.
ii $1 \cdot q(1,\pi) = 1^{2}\pi + sin(\pi) + e^{1} = \pi + 0 + e^{1}$

SLIPTEST-1 Subject Code : MA3151 Date: 7/10/24 Department: B.E.(CSE) HARKS: 20 2M 1) If two eigen values of the materix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2ach find the eigen value of <math>A^{-1} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ one equal to ². If λ is ligen value of materix A then prove then λ^2 is eigen value 8M) Find the ligen values and eigen vectors of the Materix $B = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ 2. Veriby cayley - Hamiltan theorem for the materix

OF ENGINEERING SASURIE COLLEGIE DATE: 7/10/24 DEPARTHENT: BE(CSE) SUBJECT CODE : MA3151 SLIPTEST - 1 ANSWER KEY 2MSum of the eigen value - sum of the main cliaginal $\lambda_3 = 5$ The eigen Value of A⁻¹ $\frac{1}{\lambda_3} = \frac{1}{5}$ 2. × is eigen value of materix A AX=XX Pre multiple by A $A^2 X = \lambda^2 X$ \times^2 is eigen value of A^2 is proved. 8M 1. The $B_1 = 7$, $S_2 = 0$, $S_3 = -36$)) The eigen values of $\lambda = 2, -3, 6$ (ii) The eigenvector of $\lambda = 2$ is $\begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$ iv) The eigen Vector of $\lambda = -3$ is v) The eigen vector of $\lambda = 6_{is} [...]$ $150S_1 = 6, S_2 = 5, S_3 = -11$ By cayley Hamilton theorem A3-6A2+5A+111=0

Slip Test - II Date : 19.10.2024 Sub code : MA3151 Department : CSE Mariks : 20 2 mark : 1. What is the nature of the quadratic form x²+y²+z² in four variables? Discuss the nature of the quadratic form $2x^2 + 3y^2 + 2z^2 + 2xy$. 16 mark Reduce the quadratic form into the canonical by using orthogonal $fansform g^2 + y^2 + z^2 - 2\pi y - 2yz - 2zx$, and also find Rank, signature, Index.

Sasurie College of Engineering Slip Test -II pate : 19.10.24 Department : CSE : MA3151 Sub code Answer Key 2 mark . Positive Semi - definite. Positive définite. 16 mark : Eigen Values = $\lambda = -1, 2, 2$ Eigen Vectors = $\lambda = -1 =$ $\lambda = 2 = \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda = 2 = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$ Canomical form = $\int -y_1^2 + 2y_2^2 + 2y_3^2$ Nature Indefinite = Rank = 3 Index P = 2Signature 8 = 1

SLIP TEST -
$$(\hat{y})$$

SUB CODE : MAZISI
MARKS : 20
DEPARTMENT : CSE
2 MARKS :
1 Find the derivative $y = (\chi^2 - 1)^{100}$
2 Find the derivative $y = (\chi^2 - 1)^{100}$
2 Find the domain and lange of $f(0) = (\frac{\chi - 4}{\chi^2 - q})$
(* Marks
1 diffind the value of $\frac{dim}{\chi \to 0} = \frac{dim\chi}{\chi}$
2 (fi) Evaluate $\frac{dim}{\chi \to 0} = \frac{dim\chi}{\chi}$
2 (fi) Evaluate $\frac{dim}{\chi \to 0} = \frac{dim\chi}{\chi}$
2 (f) Find an equation of the tangent line to the
Posabola $y = \chi^2$ at the point $(1, 1)$
3 gri for what value of the constant "c" is the function
"f" continuous on (- ∞ , ∞) $f(\chi) = \int C \chi^2 + 2\chi, \chi \neq 2$
3

SLIP TEST - III

DEPARTMENT : CSE

DATE: 26. 10.2024

SUB CODE : MAZISI

ANSWER KEY

<u>.</u> . . .

2 marks:

 $100(\chi^3-1)^{99}(3\chi^2)$

Domain : $(-\infty, -3) \cup (-2, 3) \cup (3, \infty)$ Range : IR

8 marts

 $(i) \lim_{n \to 0} \frac{sinn}{n} = 1$

$$\frac{(11)}{n \rightarrow W_2} \frac{17 \cos 2n}{(T - 2n)^2} = \frac{1}{2}$$

$$(9) 2\chi - y - 1 = 0$$

$$([1]) f(n) = \int Cx^{2} + 2n, \quad n \ge 2 \\ \int x^{3} - cx, \quad n \ge 2 \\ C = \frac{2}{3}$$

Sasurie college ob Engineering. Subject code : MA3151 Date: 20.11.2024 Mark : 20 Department: BE-CSE Slip test - 4 2 Maribs.) Find the outical Point of $y = 5x^3 - 6x$ 2) State Mean value theorem. 8 Marks

I find the local maximum and minimum value of f(x) = Jx - 4Jx' using both the birst and second derivatives test.

) Given the equation $x^2 + xy + y^3 = 1$; to bind y"

Answer
2 Morrks:
2 Morrks:
The Outlical Points are,

$$x = \int_{\overline{5}}^{2} x = -\int_{\overline{5}}^{2}$$

3 Solution:
 $b'(c) = b(b) - b(0)$
 $b-a$.
3 Solution:
 $b is local minimum at $x = \frac{1}{16}$
 $b is local minimum value is $-\frac{1}{4}$.
3) Solution:
 $y'' = 2$$$

Vijayamangalam, tirupur 638056

(Approved by AICTE, New Delhi and affiliated to Anna University, Chennai)

Internal Assessment Answer Book

Name B. Profession . Year/ Semester/Section .										TO	
Batch No.		an sino	L Date/Sessi	101	1				I-B		
			12/11/2								
Course code MA3151				Course Title Matrices and Calculus							
Internal	Assessm	ent T	est	IAT 1	v		Γ ΙΑΤ 2 ΙΑΤ 3			Mode	el 🗌
Name an	d Signat	ture o	f the Invigil	ator with d	ate	G	Jeer	an	an Caw	n. GF	111/24
	Instruction to the Student: Put tick mark to the question attended in the column against question.										
		Par	t A		Part B/ Part C						
		1			1	a			b	Total Marks	
	Q. No	•	Marks	Q. NO.		Marks		N	Jarks		
	1	/	2	11	1				15	15	-
	2	/	1 2	12	1	8				Ŕ	
	3		2	13							_
	4	1	2	14							_
	5	/	2	15							
	6	5	2	16						1	
	7						G	ran	d Total	23	
	8		2				AF			de	-
	9		29				Gloevands) am				
	10	10 2							2/11/2024.		
	Total			Gra	, Fotal		Name and Signature of the Examiner with dat				
To be filled by the examiner											
Course Outcomes1Marks allotted25				2		3	4		5	- 6	Total

Course Outcomes 1 2 3 4 5 6 Total Marks allotted 25 25 - - - 50 Marks Obtained 25 14 IQAC Audit - Remarks Good. Need a mpoovement. M. Sathyk Name and Signature of the IQAC member

THPL-DATE / / Internal test -1 Name: B. Prapeena code: MA3151 Section : B tall no: 24 CS072 Department: BECSE Date: 12.11.24 Subject: Matrices and calculis PART-A Eigen values = +2,-1, -3 07/the Matrin Find Eigen value of salution:-Eigen Value of A2 Propers 4-2 1-2, 9-2 Ability at a principation when of mid. 2, 3' are the tind eigen values of $\begin{bmatrix} 2 & 0 \\ 0 & 2 \\ b & 0 \end{bmatrix}$ 2, 0 Find value of b salution:. Orlven matria 2 0 02 0 $\lambda | = 2, \lambda 2 = 3, \lambda 3 = 200$ 0 12 . 11 sum of the sum of the eigen values = diagonal element $\lambda_1 + \lambda_2 + \lambda_3 = 2 + 2 + 2$ A 10 20 13 += > 3 20 B and 10 mars 5+23=6 17 MW2 - ATO 12/31-6-5 =123=1 adia aut 0 Les Vormatrin = OKIL XD X L S/ HIX 6 0 2 A TNPL

201 $\lambda 1 \lambda 2 \lambda 3 =$ 2 $\lambda 1 \lambda 2 \lambda 3 = 2(4-0) + 0 + 1(0-26)$ 2.3.1 - 8-26 8-26 2b = 8-6 26=2 b = 1 given 2 matrin D 177 mothin corresponding to the quadratic 3. form. $2\pi i^{2} + 5\pi 2^{2} + 4\pi i 22 + 2\pi 3\pi i$ × 2 2 A V. 0 72 2 11) R 23 1 0 \bigcirc 1 \$ Solution:-Eigen valuer de 21, 22, 23, sum of the eigen = Trace of A. Value Trace of A - Sum of two eign values $\frac{\lambda_1 + \lambda_2 + \lambda_3}{\lambda_3 = 0} = \frac{\lambda_1 + \lambda_2}{\lambda_3 = 0}$

0.4T3 / / product of Ala X3=0 · X1/22/23 = 20 $\lambda = \lambda_1 \lambda_2(0) = 0$ So The sum of two eigen value and trace of a 3×3 matrix A are equal $\begin{bmatrix}
 1 + 3 \\
 1 + 5 + \\
 3 + 1
 \end{bmatrix}$ 5. Eigen Values. = CE eon = | A-ATI=0 <u>4x3</u> 42 $1e = \lambda^3 - S1\lambda^2 + S2\lambda - S3 = D$ SI= 1+5+ 1=7 $S_2 = (5-1) + (1-9) + (5-1)$ = H-8+H 83 = 1 (5-1)-1(1-3)+3(1-15) =1(1)-1(-2)+3(-14)= = 6-H2 2-36 CE are =) 13-72+01+36=0 -2 1 -7 0 36 0 -2 18 -36 X=-2, X2-9X+18=0 1-9 18 $\lambda = -2, (\lambda - b)(\lambda - 3) = 0$ 19 $\lambda = -2$, $\lambda = 6$, $\lambda = 3$ -6, -3 ATMPI

INPL DATE derivative $y = (n^3 - 1)^{100}$ 6. dy = 100 (23-1)99. 322 dn 300 2 (23-1) 99 Critical points : y=5 n³.6a 8. - 5:(3n)²-6 dy dn 1522-6 npin =1522=6 n2-162 155 Ì 5 Evaluate lingte for lim 10. n+2 M378 n-)-2 f(n) = n+223+8 -2+2-0 -2)3+8 -8+8 1. Hospital rule f'(n) = 1 + 05 1 322 3(2) 32+0

- INPL -DATE / / lim 1 322 =) 2-)-2 $\frac{1}{3(-2)^2} = \frac{1}{3(4)} = \frac{1}{12}$ PART-B 11. b. $6n^{2}1 + 3n^{2}2 + 3n^{2}3 - 4nn^{2} - 2n2n^{3} + 4x_{3n1}$ matria form. unital na let A =6 -2 2 -2 3 -1 2-10/2013 / pie brit CT characteristic equation = 1A-AI =0 $\frac{(1e)}{2} + \frac{3}{51} + \frac{52}{52} + \frac{53}{2} = 0.$ 51=6+3+8=12 $S2 = (9-1) + (18-4) + (18-4)^{-1}$ = 8+14+14 48 = 36 16 32 S3 = 6(9-1)+2(-b+2)+2(2-6)= b(8) + 2(-4) + 2(-4)= 48 - 8 - 8 ÷., - 48-16 = 32 The GE are, $\lambda^{3} - 12\lambda^{2} + 36\lambda - 32 = 0$ L TNPL 1 -

DATH λ³-12λ²+36λ-32=0 -12 36 -32 2 32 0 $\lambda = 2, \lambda^2 - 10\lambda + 16 = 0.1$ 20 2 0 -10 16 1=2 , 12-101 + 16=0. 919 8 -2 $\lambda = 2, (\lambda - 8) (\lambda - 2) = 0$ -10 λ=2, λ=8, λ=2 The eigen values are $\lambda = 2, \lambda = 2$, 1=8 find eign vector:-TO $(A - \lambda I) X = 0$. case(i) if $\lambda = 8$ (A-XI)X=0 (A-XI)X=0 -2 8 6 0 0 D X) 0 8 -2 3 X2 0 5 D 0 3 -1 Ó 2 0 8 6-8 -2 2 X) 6 X2 3-8 2 5 0 73 2 3-8 -2 -2 2 ×1-×2 ×3 0 -2 - 5 D D 5 2 -1 -

CATE / I equations are, -2x1-2x2+2x3=0 -0 * $-2\pi 1 - 5\pi 2 - \pi 3 = 0$ $-2\pi 1 - 5\pi 2 - \pi 3 = 0$ -3NI 92 93 -2/--2 2 00 -2 _2 -5 -1/ -5 $\frac{\eta_1}{(2+10)} = \frac{\eta_2}{(-4-2)} = \frac{\eta_3}{(10-4)} = \frac{\eta_1}{12} = \frac{\eta_2}{-6} = \frac{\eta_3}{6}$ $=) \frac{n!}{2} = \frac{n^2}{2} = \frac{n^3}{2}$ The eigen vector of $\lambda = 8$ is $\frac{n^2}{2} = \frac{n^3}{1}$ $\frac{1}{\left(\frac{2}{-1}\right)}$ il, x=2 13 $(A - \lambda T) \chi = 0$ (A-2I) X=0 (A-2I) X=0. 6 -2 27 F2 0 0 7 FX1 F07 - 0 2 0 2 2 2 2 2 2 3-2 3 -1 -D 2 -1 3 6-2 -2 2/ RIT D -2 3-2 -1 22 2 0 -1 L 23 3-2 2 0 4 -2 27 [217 107 -2 | -1 | λ_2 2 -1 | 23 TMPL

-TNPL-DATE 471-272+273=0-0 -2x1+n2-x3=0-D 2711-72+73-0-(3) case (ii) 72=2. 1000 . MI = 1 (3) =) 271-92+23=D. 2(1)/2 + 3 = 0-2+93-0 0+73=0 23=0 The eign vector of $\lambda = 2$ u 20 care (iii) 92 = 3N1=2 N 2% 221-72/723=0 3) =) 2(2) - 3 + 23 = 03+93-0 +23=0 213 = -1 The eign vector of $\lambda = 2$ a series and

DATE / / The eigh vector motion . (41) $-\begin{bmatrix} 2 & 1 & 2 \\ -1 & 2 & 3 \\ 1 & 0 & -1 \\ -1 & 0 & -1 \end{bmatrix}$ 12. 2) 9+4+1 13 TO find N $N = \begin{bmatrix} 2/\sqrt{2^2 + 1^2 + 2^2} & \frac{1}{\sqrt{2^2 + 1^2 + 2^2}} & \frac{2}{\sqrt{2^2 + 1^2 + 2^2}} \\ -\frac{1}{\sqrt{(-1)^2 + 2^2 + 3^2}} & \frac{2}{\sqrt{(-1)^2 + 2^2 + 3^2}} & \frac{3}{\sqrt{(-1)^2 + 2^2 + 3^2}} \end{bmatrix}$ $\frac{1}{\sqrt{1^{2}+0^{2}+(-1)^{2}}} \frac{-1}{\sqrt{1^{2}+0^{2}+(-1)^{2}}} \frac{-1}{\sqrt{1^{2}+0^{2}+(-1)^{2}}}$ $2/\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{10}$ $\sqrt{2}/3$ $\sqrt{3}$ 2/3 $-1/\sqrt{10}$ $2/\sqrt{10}$ $3/\sqrt{10}$ = $-1/\sqrt{10}$ $2/\sqrt{10}$ $3/\sqrt{10}$ NE 1/52 0/52 -1/52 1/52 /52 -1/52 NT= [2/Vg -1/Japin 1/5] [2/3 1/54 1/52 1/59 2/574 0 2/59 3/572 -1/52 1/3 1/514 0-2/3 3/514 -1/2 D= ATAN 11/5= 12/53 F/JA 11/J2 - 16 - 202 183 2/514 0 -2 3 -1 2 2/13-3/54 -1/52 3 -1 zero valu 13 manuel = 2/33 mals 101 2/553 kungeni -11 -1/572 2/50 3/572 -1/52 0' -1/52 OTAS = Shurren - Shurren C 8 Ö D Ø 0 2 0 \bigcirc 2 A TNPL

RIA. DATO To find conon cal form YI y = C= MT Dy 42 43 13×1 91 D D 8 9, 42 43 02 D 1×3 92 O D Y3] 3×1 2 (3×3) 917 84, 242 243 2 92 93 1×3 321 11-1-53 8412+2422+2432]1×1 To find Nutwie of the motion 412 All the eigh value of are positive $\lambda = 8$, $\lambda = 2$, $\lambda = 2$. its possitive définte. SO. 8 0 DE 01 3 0 2 0 0 2 0 index (P) = number of possifive value diagonal. D = 3 Rank(r) = number of non zero value In diagonal r=3 signature = 2p-r. =2(3)-3 = 31/

- T.M. --DATE 1 1 b) . (1) Determine Whether floo) enest or not for the given function $f(n) = \begin{cases} n \sin(1/n), n \neq 0 \\ 0, n = 0 \end{cases}$ Solution $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ f(n) = f(a) = lim $= \lim_{n \to \infty} f(0+h) - f(0)$ h-jo $= \lim_{h \to 0} \frac{f(h) - f(0)}{h}$ $= \lim_{h \to 0} \frac{h \sin(h) - 0}{h}$ = lim sin 1/h - 0 h-70 sin 1/h - 0 = lim sin 1/p h-70 f(n) = 9 The given function are not ensit. ficos is not ensit. TNPL

Vijayamangalam, tirupur 638056

(Approved by AICTE, New Delhi and affiliated to Anna University, Chennai)

Internal Assessment Answer Book

Name	S. Su	thishna		Year/ Semester/Sec	tion I-"B
Batch No.		Date/Session	27/11/24	Department	ESE
Course code M	1A3151	Course Title	Marine	s and c	alculus
Internal Assessment Test IAT 1			IAT 2	Алт з	Model
Name and Signatur	e of the Invigi	lator with date	V.DEEP	AN V Right 24	A

Instructi	on to	the Student:	Put tick mar	k to th	ne question at	tendeo	l in the column	against question.		
I	Part	A		I						
Q. No.	1	Marks	Q. NO.	~	a	~	b	Total Marks		
(1101			Q. NO.		Marks		Marks			
1			11	1	7			Т		
2	~	2	12	1			13	13		
3	1	2	13							
4	1	2	14							
5			15							
6	r	2	16							
7	1			20						
8							Grand Total 20			
9		00			9. Jeeranan Lan					
10		0	21			St.				
Total		9	Grand Total			Name and Signature of the Examiner with date				

		To be fi	lled by the	examiner			
Course Outcomes	1	2	3	4	5	6	
Marks allotted	-	25	25			0	Total
Marks Obtained	-	17	11	-		-	50
	-	29					
1210 the 1 have a selection of the selec							
Written Practices is Mustpreseded. FM. CA							
0.0	ITM. satur						
Name and Signature							
						of the IQA	C member

Pont A CHOLA-DATE / PACES Name: S. Siethishna Sub; materices and Class CSE ralalus Date: 27/11/2024 "B" Sec Robl no: 24CS102 Subcode: MA3151 Exam: Internal Exam I part-A 2 mark: 8 2 prove that im x->0 5 2. 121 daes hat en Soul: billion 2-20 /2/ 5 11-03 +US 111-80-11 = (a yazor vit tas 121 -xuf xLO : 11/12 0 lim + En lim x-20+= N x-Jot 0 + 10 In in 12) lim x x-70 2-20 Jrugin -25 jo; 121 en does not orist. 2-20 Evaluate the limit lim ant x2. 42 F 106 x2-3n-4 10 Solu: Bruenden Jer 22x2=3n-4 = 12-4(1) Um 20->1 $(1)^2 - 3(1) - ...$

CHOLA-DATE PAGES 11 . . . -4 1-3-4 ÷. \$ 2 4 + -1.1 in a 24 . ! If u=23 ty 3 when x = cats t y=b sint the find dy dt. F. . 1 80/u: Griven- 4=213+43, x= cast, y-bsent = east, y= bsint u=23+43, X $\frac{du}{du} = 3x^2 + y^2$ to agent du de =6Cast 12517 dy -23+342 21. 3 0 15 dei .dy In dy 13.1 r of 1 -1.5 - 81. 1

B. poot -B langer 11a) i) find the elacal maximum and lacal minimum values of $f(x) = \sqrt{2} + 4\sqrt{2}$ using first and scened derevatives test Guien $f(x) = \int x + y \sqrt{x}$ Solu: = 21/5 - 21/4 flad = 1/2 x 1/8 -1 - 1/4 x -14 -1 = 1/0 2-1/3 - 1/11 x - 3/4 =1/2 x -3/4 (82 /4 -1) f(x) = 1/4 x - 3/4 (2x/4 - 1)To find altical mumbers f(x) = 01/4 2=3/14 (22/14-1)=0 8x1/4-1=0 an-1/4 = 1, all -21/4=18 2=(1/8)4 n=1/16

CHOLA-The citilcal number is x = 1/16 First Dougrative fest in att 12 gi + F(1/16) = 1/16 - 4/16 = (1/1)/2 - (1/2)/4 $\frac{1}{14} - (\frac{1}{2}) = \frac{1-8}{4} (\frac{5}{16}) = \frac{1}{4}$ - of is lacal minipum bumber =x = 16fies lacal menmum number Value ate f (1/15) = - 1/4 á (UNE- V N Soond Dorgvoline test: f" (2) = (1/2 (-1/2) = 1/2 -1) - 1/4 (-3/4) h -1/4 2-3/2+3/2-1/A 1/4x =7/4 (-4x/4+3 1/16x - 7/4 (-4x 1/4+3) = 1/162 - 7/4 (- 42/9+3) F11 (1/16)=1/16 (1/16) -7/4 -4 (1/16)/9-+3

CHOLA-PAGES = /16(1/24) -7/4 [-4(1/24)/4+3] $= (\frac{1}{10})(\frac{1}{2})(-\frac{1}{2})(-\frac{1}{2})(\frac{1}$ 1/10 (25 (-3+3) = /16 (138)(1) 8->011-9) 126 find the dumensions of the rectangelar box without a top of maximum. capacting, whase surface area us 108 89. cm. Solu: g(x,y,J) = xy+ Zyz+2zx = 108 Equilition Ja 2 equilit f(x,y,z) = 2yzock-fund to run de- UY TR F(x1417)= x41 +A(2+247+247+27xx-188) dF _ yoztx (y+2z) -) 0 $\frac{\partial F}{\partial \theta} = 2(z + \lambda(z + 2z)) \longrightarrow (2)$ $dF = \chi y + (2\pi + 2y) \longrightarrow 0$

CHOLA-DATE _____ 2I+2(n+202)=0 -> @. 2 From 0 & O (110051) Ox 2= Oryz + Ary + A227 の ア リー> フリス + コンリモ コシリ アーひ 12x7-1247=0-3 got a finithing red mal vou 2n/2- 2247=1 122 (2-9)=0. 0:01 Stager !! 2-4=0 2=4 From equition & : & equilion 3 (1121117)=2.47 Yy => xyz thay thay zo (\mathfrak{I}) xz=) 2yz+222+22zy=0.1 124-7522=0 m 11 A2 (y-22)=0 0-1-22=0 ing. 16 y = 22 46 y/2 = 7 135 1

CHOLA PAGES 8 = 28+287+222 - 108 =)22+22(9/2)+2(9/2) 4=108 $=)2^{2}+2^{2}+2^{2}=108$ =)/3712=108 -11 $\gamma 2 = 108$ 51 NZ= 36 50 $x = 6 f_{11}$ ii) 32 cc (S) = $74 + 247 + 127 \alpha$ Volume = 247 = 32 801w; V=247-32 F(21417)=24+247+272+)(247-32) $\frac{\partial F}{\partial x} = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial y} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial y} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial y} = \frac{\partial F}{\partial y} =$ 4. dF 2+27+127 Jy dF 2y+2x+dry dz JE 297-32 27 K.C. PO 1: x f = 0,Jex 13 44. 14.6

UNIE PAGES 4+27+24Z=0 9727 = - X9Z 8+27 YJ у $-\lambda$ 301 +22= yz 47 401 <u>df</u> =0 2+22+1262=0 AZI x+2z= 2+22 they Cou they my ZU (<u>6011000 3</u> + 27 =-545 - 2 1 36 1 Jall C 113 + 2 2 1 +2/2 >0 $\frac{\partial F}{\partial z=0}$ 136 24+22 + 224 1. RO 15 $28 + 2x = -\lambda 29$ 56 775 24+200 ×G xy 24 +22 03 1 4) 6

CHOLA PAGES 3 19 22 SID I x 20 =2 R Vall? x)A) Ix=y 1+2 SIN 24 S=2Z, 25 10101 equition (D) & From B 4=2I SPE = 2y z -32' Y. xib $\chi y Z = 32$ (22)(22)(7)=32 213 = 32 23 73 = 8shi 2 Dc = 419=4 The answer is equal

CHOLA PAGES 6. write Euler's thearen on hamageneaus function: 80/u; Ju is an homageneous function degree in 'in the variable 12' and 'y' Then, 11 1.1 Ju y du Ju Ente Fr 8 D 5 10. Find dy 23 + 43 = 3024 ----dn 19 Guin Soly. = du = 23+43 - 3 any da dyx3 y3 dy 3a ruy du dre da = $Z\alpha^2 + y^2$ =394 • =2227+49 80 . $a = 2\pi^2 Hy$ 3 11 0 Mandre off. 6

CHOLA 3. Find the Slope of the circle 22 ty2=25 at (31-4) Solu: Guven = x2+y2 = 25 22+42-25 $\frac{dy}{dx} = x^2 + y^2 = 25$ d (22+42)= d 25 20x +244'=0 y1 -- D2 74 -2 2 U dy. -4) = <u>-13</u> -74 = = 3 4#

DATE 1 1 MA3151 Subject : materia and Name: K. Pooma C. plculis class: Sec-B' Department: BE. ESE 181Pp test NO:01 Roll po: 24CSO44 Date: 07.10, 2084 1). liven = A = 2 211 1 2 K. P. Joma N1=1 (Y25=1- A) - 12 H To Find Y3 = ?- XTX-XA Y1 + Y2 + Y3 = 9 + 3+2 +1 + /3 = 7 2+ 2/2 = 7 A chailfular and a 0 Y3=7-2 (6) 4 - 78 6) A Y 3=5 2 = 1, $Y_3 = 5$ Y1=1 Y, Y2, Y2 is an eigen Value of A. VELL 1/4. 1/42. 1/43 is a sigen tralue of A-1 To Find the AT st heaven sate it A TNPL

UNIE TRAI $\frac{1}{\gamma_1} = \frac{1}{\gamma_1} = 1$ $\frac{1}{\gamma_2} = \frac{1}{\gamma_1} = 1$ 1/3 = 15 " 21. given: 1 is ergen value of materix of A Fren (A-2I) X = 0 AX-XIX=0 $A \times - \lambda X = 0$ $Ax = \lambda x \longrightarrow Q$ por multiple A A(Ax) = A(Xx) $A^2 x = A x x$ from equation () $A^2 x = \lambda(\lambda x)$ $A^2 x = \lambda^2 x.$ χ^2 is eigen value A^2 The 22 How proved //

700-1-1 1 DATE and the second 3) given: A = 3 ١ ١ 551 1 ١ 3 ١ A-AI =0 (ox) x3-Six +52X-53=0 X er TI 1 5, =1+5+1 S-1--1 ٩ ١ 3 52 5 5 ١ (5-1) + (1-9) + (5-1) > \$ -8+4 S-0 1 -10-12 LA1 Sao (5-1)-1(1-3)+3(1-15) = (4)-1(-2)+3(-4) +2-42 1 al 16 16 13 x2+0x+36=0 36 Ē 0 Ч -36 -6-0:1 6 10 (Dalmi) 0 - 1 -1-5-6 7 TNPL 571 1 5

LAVE I I -6 Y=6, Y2-Y-6=0 Y=6, (Y+2) (Y-3)=0 Y=6,-2,3 To Find the sigen values vector rase (1) Y=6 If $(A-\lambda I)X=0$ 1-6 3 X, 0 ١ 2 X2 0 5-6 0 1- 1-6 23 0 -5 1 3 x . > -1-17) 0 xx Kz3 -5 3 -5x, +x2+3x3=0 x1 x2 Xa x, - x2 + x 2 =0 -1 1 3-1 0-5-5-2-1 -5 3 X1-1-X2/)1-+3 5-1 3+5 X1 L1 $-\frac{x_2}{8}$ = ×3 Y=6 is eigen talue ١ Vector case (11) Y = -2 (A+2I)X =0 1+2 XI <u>3</u> 10 5+2 22 С 6 3 ١ 1+2 X3

3 1 3 ×, 6 X2 0 ×3. 0 1 3 3×1+×2+3×3=0 X2 X3 Sc. 12, 172, +123 =0 4 1 3×1+×2+3×3=0 3 3 $\frac{x_2}{2-2} = \frac{x_3}{1-21} = \frac{x_1}{20} = \frac{x_1}{0} = \frac{x_3}{-20}$ X1 -21-1 $x_1 = x_2 = x_3$ γ=-2 is eigen katie rase (11) $\gamma = 3 = 3$ (A-3I)=0 x, 0-13 1-3 1 3. x2 1 5-3 1 2 6 ×3 1-3 3 1____ ъ. 3 -2 1 x_1 42 \propto 0 xx О 3. 1 -2 -2-X, +X2+3×3=0 X, X, Xz x1+2x2+x3=0 2 1 2 321+25-223=0 1 -2 1 3 ×2 ×3 => 3+2 1-6 XI X2 - X3 Σ_1 -4-1 -5 -5 5 TNPL

THINK, DATE 1 1 XX 1: Xa \propto_{I} Þ C -1 ergens îs. Values V=X Vector 4) guen: A =1 1 01 1 1 2 -3 12 3 2 -1 02 32-[A-XI] = 0 (or) 13-5, 12+521-53=0 $S_1 = 1 + 2 + 3$ = 6 - V Service Street 2 -3 1 S2= 4 4 1 3 21 (6+3)+(3-2)+(2-1) -GP2 419× 3. 52=5 3. 13 1 -4 S3=:141 5 =1 (6-3)-1 (3+6)+1 (4-1) =1(3)-1(9)+1(-5) = 3 - 9 - 5 145 3-1 - Er 53=-11

DATE / ($\lambda^3 - 6\lambda^2 + 5\lambda + 11 = 0$ $A^3 - 6A^2 + 5A + 11I = 0$ A = A.A 7.1 1-1-1 7 -3 2 2 -2 3 2 3 17 1-3+3 1+1+2 . 1+2-1 1-6-9 1+4+3 1+2-6 2+2+3 2+3+9 2-1+6 15 24 41 8 - - 14 -3' 14 11 2. 77 - 1 B3 A^2 A 2 2 8--14 12 - 3: 41 2-3 -1:3 2 4+2+2 ++4-1.4-6+3 -3+8-28 -3+16-14 -3-24-42 7-3+28 7+9+42 7-6714 1 8 -27 -69 T' and -23 -13 58 32 A TNPL

OHTU . 5.7 12 6 BA2= (B-1) -18 -81 81-12 -18 84 5 5 C' A SA = 5 4 4 10 -15 5. 10. -5 15 117= = 11 Q 0 10x1 0,-11,0. 0 0 11 P. Car $A^{3}-6A^{2}+5A+11I=0$ x A-1-2 A-1A3-6A-1A2+5A-1A+11A-17=0 A2-6A+5I+11A1=0 1 H H 11A-1 =-A2+6A-5I # 1 . Day -2 -2 -A2 -8 14 1.0 3 -14 - 6 A == 6 1 + 1 6 6 1. Call p 16. ----12 -186 -6 18 12 2 5I = 5 0 0 0 5 01 16 0 0 5

LALL -EXTE 1 1 $nA^{-1} = -A^2 + 6A - 5I$ 5 0 0 - 4 5 $||A^{-1} = \begin{bmatrix} -4+6-5 & -2+6-0 & -1+6+0 \\ 3+6-0 & -8+12-0 & 14+68+0 \\ -7+12-0 & 3-6-0 & -14+18-5 \end{bmatrix}$ A 5 4 A_/ 3 -1 -4 9 5 1 -3 L TNPL

SASURIE COLLEGE OF ENGINEERING

Vijayamangalam, tirupur 638056

(Approved by AICTE, New Delhi and affiliated to Anna University, Chennai)

Internal Assessment Answer Book

Name	P.V.K	Sarmitha	Year/ Semeste	1-1-8		
Batch No.		Date/Session	11121221	Department	CIE	
Course code	MA3151	Course Title	HATRICE			
Internal Assessment Test 1AT 1			IAT 2] IAT 3 [Mod	Provide and the second s
Name and Sig	nature of the Invig	VI	20my 1/2 /24			

Instructi	on to	the Student:	Put tick mar	k to tl	ne question at	tendee	l in the column	against question.	
Part A			Part B/ Part C						
Q. No. 🗸		Marks	Q. NO.	~	a	~	b	Total Marks	
					Marks		Marks		
1	1	0	11	1	16			6	
2	1	2	12	1	lb			6	
3	\wedge	0	13	1	15		15		
4	1	2	14	1	16			16	
5	1	Ð	15	1	16			16	
6	1	2	16						
7	1	2	Grand Total					79	
8	\wedge	2	2-2			10			
9	1	2	93			(Jewanan Com		
10	1	2	\vdash				RE -		
Total		14	Grand Total			Name and Signature			
Grand Total of the Examiner with date									

		To be fi	led by the	examiner					
Course Outcomes	1	2	3	4	5	6			
Marks allotted	AO	20	28	-		0	Total		
Marks Obtained	ob	19	20	-	-	_	100		
A 1QAC Audit - Remarks 73									
Good Need to Maintance This result									
							Name and Signature		
						of the IQA	C member		

-SPBlarger SM DATE : MODEL EXAM-1 Name: P.V. K. Sanmitha Subcode: MA3151 Reg NO: 732424104088 Date: 11/12/24 Subject: Matrices and Department: B.E computer calculie . science 91 PART - A 0 + 0 - 6. A2 -Find Ar' and 3 0 D A = 8 4 0 6 5:1: 2 0. - 01 4 4 1615-6 0 0 3 A = 8 0' 4 - 1 6 2 5 $A^2 = A \times A$ Λ C. F. A.V . 0 3 0 300 XU 840 840 5 6 2 6 2 5 18 16 9+0+0 0+0+0 0+0+0 34 = 30 0+.0+0 0+16+0 24+32+0 C 64 0+0+25 18+16+30 0+8+10 • . 4 9 . 0 . · · P., Δ +1. 56 16 D. 0 64 18 S . 11 . 25 3 0 0 Arteha F. Aton 8 4 0 6 2 ×11 - 3. 5 The characteristic eqn is IA-ATI=0 (ie) $\lambda^{3} - s_{1}\lambda^{2} + s_{2}\lambda - s_{3} = 0$

-SPB-DATE : SI= 3+4+5 = 12 20 1022 3 0 30 5, = 90 5 84 2 5 6 2 97 = (90-0) + (15-0) + (12-0)= 20+15+12 = 47 32 = |A| 47 -60 = 3(20-0)-0+0 5 1 - 12 -35 60 5 0 = 3(20) = 6012 7 0 The (. E is 12 $\lambda^{3} - 12\lambda^{2} + 47\lambda - 60 = 0$ LA $\lambda = \lfloor q \rfloor \lambda^2 - 7\lambda + 12 = 0$ $\lambda = 1 \left(\lambda - 4 \right) \left(\lambda - 3 \right)$ $\lambda = 1, \lambda = 3, \lambda = 4$ A⁻¹ 1 (adjA) Ξ 1A) (20-0) Ö 0 0 60 01 15 0 0 d 0 12 0+0 -A-1 = 0 20 0 1 15 0 60 0 1/1 81 0 12 2 12 3 worite the quadratic A = 2 -2 -4 form. 3-4-3 Solm. The quadratic fear of the matoir, C x2-2y2-322+ 4xy+6xz-8yz 15

-SPB-DATE : $x^{2}-y^{2}+4z^{2}+4xy+2yz+6xz$ 4 A =1 2 3 2 -1 1 5 3 1 4 The CE eqn is IA - AI 1=6 (ie) 23 - 5, 22 + 522 - 52/=0 $S_1 = 1 - 1 + 4 = 4$ × • 3 S2 = -1 104 1 3 12 14 34 2 -1 (-4-1)+(4-9)+(-1-4)= 1-5-5-5 2 C a J = -15 $5_3 - |A| = 1(-4-1) - 2(8-3) + 3(+2+3)$ 1(-5)-2(5)+3(5) -5-10+15 = 0 The C.F/ is 23- $D_1 = 11 = 1$ = (-1-4) = -3 12 D2 = 2 -1 re simil. Da = 1.2.3 = 1(-4-1) - 2(8-3) + 3(5)2 -1 1 | = 1(-5) - 2(5) + 15314 =-5-10-+15 =0 $D_1 = 1>0$ $D_2 = -5 < 0$ $D_3 = 0$.: It is indepinite tence proved.

-SPB_ DATE : if - 2 Ex Eo x 2 5. Sketch the graph f(a) = if ocxes $2-\chi$ $\alpha^2 =) \alpha = -2$ $x^2 = 4 = (-2, 4)$. $\chi = -1$ $x^2 = 1 = (-1, 1)$ $\chi = 0$ $\mathcal{X} = 0 =)(0, 0)$. met in the line line 2-2=) 2=1 it is in a 1 =) (1,1) 2-1=1 $\chi = 2$ · · · · · · $2-2=\phi=)(2_10)$ 1-2.4) \$ 22 (1,1)Si de a 114 (-1,1) 2-2 a pla × x1 0 ≯~_ 2 1.1. E- - - EV Ty' $f(x) = 2x^{3} - 5$ 6 tind domain $-x^{2}+x-6$ (?) ELGIR (S) 1 $f(x) = 2x^3 - 5$ -6 x2+x-6 \wedge 10 - 2x3-5 -2 1.00 3. (x+3)(x-2)V +1 x =-31, x = 2

SPB-OATE : The domain of the tunction is $(-\infty(, -3)\cup(3, 2)\cup(2, \infty))$ Diff y=xtan (va) 7. 111 12 $y = x \tan(\sqrt{x})$ dy dx x 1 1+x 2x i tanva Vax Vite 2 v/x + tan Vx dy dx 1+2 2(1+2,) tan 12 u = x - y, v = y - z, zv = z - x, find 8, 2(v, v, w) $\partial(x,y,z)$ Soln (ari) = 3 (ari); 11 .1 . 1 7 $u = x - y \qquad v = y - z$ $W = z - \chi$ 24 =1 $\frac{\partial y}{\partial x} = 0$ 300 - -1 32 24 2Y 2y $\frac{\partial w}{\partial y} = 0$ ----24 ÷ Dy = 0-25 - -2w = 1 25 2.2 By Jacobian's method - 1-11

SPB-DATE : 24 24 24 2(u,v,w) 2y ox 2V 2X <u>əv</u> 20V $\partial(x, y, z)$ dy JW DW and dx 29 26 1 dw -0 D 0 -1 = 1 (1-0)(-1) S. F. H. I 24 2(u,v,w) 2v 2x 200 32 2(n,y,z) dr. Dw 24 - ay By dy 3v Dw 24 X & C 25 22 22 -P 0 -1 -1 0 1 0 -1-= 1(1-0) - 0 - 1(1-0) $\leq 1(1) - 1(1)$ = 0 $\partial (u, v, w)$ =0 $\partial(x, y, z)$ $z = \chi^2 \pm y^2$ 9 $\chi = t^2$ = 2at 4 $\frac{dz}{dt}$ dz 25 dx dt 22 dz 22 dt Dy dt ,

-SPB-DATE : ax at + 24.2a 2(+2)2t + 2(2at). 2a = 4t3 + 8a2t p dz dt U=x2+y2+ 2xy Verify Syler's theorem. 10 $u = x^2 + y^2 + 2xy$ χ^2 42 u = 1.4 24 χ^2 x is à hamogénouse function of degree D u $x. \partial 4$ 24 nu .ay .22 241 - 24 du dr 4 24 1.4. $\frac{\partial y}{\partial x} = 2x + 2y = \frac{\partial x}{\partial x} = x(2x + 2y)$ Ju 24-+22 =) 4.24 = y (2y+2x) 24 Dy x(2x+2y) + y(2y+2x) = 2u= $3(x^2 + xy) + 2(y^2 + xy) =$ $2[x^2+xy+y^2+xy]$ $= 2 \left[x^2 + 2xy + y^2 \right]$ $\frac{y}{2u} + y}{2u} = 2u$ Hence Suter's theorem Venified

-SPB_ DATE : PART-B 322+542+322-242+222-224 (1, (a)3 -1 1 A = -1 5 -1 1-13 The characteristic eqn is IA - XI =0 $(ie) \lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$ $S_1 = 3 + 5 + 3 = 11$ S2 = 5. -1 3 -1 3 1 180 13 3 -1 -1 5 (15-1) + (9-1) + (15-1)= = 14+8+14 812 Y. S2 = 36 1- $S_3 = |A| = 3(15-1) + 1(-3+1) + 1(1-5)$ = 3(14) - 2 - 4= 42-2-4 52 = 36 2 1 - 34 -11 36 The C.E is 36 0 2 -18 0 $\lambda^3 - 11\lambda^2 + 36\lambda - 36 = 0$ 1. 1. 1 -9 18 $\lambda = 2 \lambda^2 - 9 \lambda + 18 = 0$ 18 1=2 $\lambda = 3, \lambda = 6$ The eigenvalues are 1-2,3,6 -9 To find eigenvectors,

-SPB-DATE : case (i) If $\lambda = 2$ $(A - \lambda I) \times = 0$ 3-2 -1, 1 2, 0 5-2 -1 -1-= 2/2 Ο -1 3-2 1 23 0 1 -1 1 x, ø -1 3 22 = -1 0 \$ 3 -1 1. 0 $x_1 - x_2 + x_3 = 0$ $-\chi_1 + 3\chi_2 - \chi_3 = 0$ 82 x1-x2+x3=0 x_1 $\chi_2 \chi_3$ - 1, Y -1 5 3 3 τ. -1 1 1 1 x^{1} 22 23 --1+1 3-1 1 - 31 α_{i} 23 -2 x2 = . 2 0 231 (1) XI -<u>x</u>2 • The eigenveltors of 1 = 2 is 1 case (ii) IP A = 3 . . $(A - \lambda I) X = 0$... d l 2 ţ • - 1

-SPB-DATE : Section and section of the section o -21 0 8-3 -1 1 22 -1 5-3 -1 5 0 0 23 3-3 ١ -----0 0 -11 xi --1 72 -1 2 0 (-1 2x 0 0 1 • -٠ 02, -22+23 =0 $-\chi_1 + 2\chi_2 - \chi_3 = 0$ 21-22+023=0 22 23 2, -1 Ô x-14 => -11 2 41 -1 2 . 0 α_1 22 = -22-1-0 0+1 2-1 $\alpha_{1} -$ X2 - X2 1 8 The eigenvectors of 1 = 3 is 1 X 1 Case (iii) Ep A = 6 . (A-XIX=0 3-6-1 21 -1 0 5-6 -1 = 22 0 1 -1 3-6 23 0 -3 -1 21 1 0 -1 -1 92 -1 1 0 1 -1 -3 23 0

-SPB-DATE : $-3x_1 - x_g + x_3 = 0$ 5 .+ $-x_1 - x_2 - x_3 = 0$ x1 - x2 -3x3 =0 2C1 NZ 22 . -9 2 -1 1 -3 -1 #1 1 α_1 χ_2 χ_3 χ_3 all' -1-3 9-1 -1-3 X2 201 23 -4 8 -4 1 22 \mathcal{X}_{I} Xz -1 2 -1 The eigenvectors = 6 is -1 q 1 27 Or -2 . 1 -1 <u>.</u> 1 The eigenvector matrix 1 1 1. B = Set months 0 -20 1 -1 1 1 Q 1 13 1 N = 1 V1+1+12 V12+12+12 V12+12+12 - 2 0 $\sqrt{1^2 + (-2)^2}$ V12+(-2)2 . ` VA)2+12+12 . V (-19+12+12-VI-1)+1+12 0 2 1 13 V3 -1 2/15-1~ 691 -0 -1-13 V3

-SPB_ DATE : 13 1 V3 1 V3 . 0 ÷ ... Ī N"= -2 0 15 12 去 13 Ð -1 13 NT -13 1/5 +3 53 -2-+3 13 Diagonaliced matrix) D = NPAN 12 $\frac{-1}{\sqrt{3}}$ 0 1 75 73 3 -1 13 13 1 D-V3 かしたしょ 15 53 -1 Ø 5 -1 13 -2 15 13 1-1 3 -1--1 • 1 ÷ . $c \uparrow$ 2 D = 0 0 0 30 0 0 6 1 cono-nical form 1 C- YTDY 5 -~ 1 Y = y, y1 = y2 y1'.y2 y3 + Y3 CE 0 0 S, 2 1 4 42 Y 3 0 3 Ο 42 O 6 6 43 . 1 24 = 1 342 6-43 y,-1.92 1.92 1.93

SPB-DATE : $C = [2y_1^2 + 3y_2^2 + 6y_3^2]$ Nature of the matrix, All eigenvalues are positine .. The nature of the matin is positine definite Rank: (r) No. of non-zero rows, r=3 Index: No of positive relement P = $\langle \cdot \rangle$ Signature: 5 = 2P-r = 2(3) - 3. • 🖒 = 6-3 S = 3 $Q = 2x_1x_2 + 2x_2x_3 + 2x_1x_3$ 12 (b) 1 -1-Q =D 0 Ł t 1 0 15 The characteristic eqn is (A - XI 1=0 $\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$ (te) S1 = 0 01 0 1 0 1 1 S2 = 10 1 0 10 = (0-1) + (0-1) + (0-1)= -1-1 - 1 = -3

SPR_ DATE : $S_3 = [P] = 0 - [(0 - 1) + 1(1 - 0)]$ = 0-1(-1)+1 = 1+1=2 The CE is $\lambda^{3} - 0 \alpha^{2} + (-3)\lambda - 2 = 0^{2}$ $\lambda^3 - 0\lambda^2 - 3\lambda - 2 = 0$ 2=1, 2-2-2=0 -1 1 0 - 3 - 2 0 -1 3=-1 (2+1)(2-2)=0 - 2 2=-1 X=-1, X=2 101-1-12 To find eigen vector Lau(i) I 1 = 2 O=X(IK-A) 0-21 1-1 ×, 0 0-2 1 11 -22 0 1 (0-2 25 0 -2 1 1 X P 1 -2 1 5 92 0 1 1 - 2 22 0 - 22 + 22 + 23 = 0 21-222+2250 1. R1 + X2 - 2X3 = 0 DC, α_2' X3 1 -2. 1 . ١ Path 72 0)

-SPB-DATE : $\frac{x_2}{4-1} = \frac{x_3}{1+2}$ 21 -1 1+2 X2 x1 -23 3 3 <u>د</u> 3 1 14 23 21 - 22 1 . The eigenvector @ 1-2 is 1 1 - 1 • . 8. 11 • 1 Case (ii) If $\lambda = -1$ 1. r. O = X(IK - H)1. 7 1. 0+1-1- 1-21. O 22 0+11 1. E 0 137 1. 1. Ott 23 . 0 t 941 -1 01 1 0 • t 5 1 1 92 0 11 23 1 1 ï • 0 ... $\chi_1 + \chi_2 + \chi_3 = 0$ a1 + 22+23=0 21+22+23'=0 In The there equations are same So we assume x=0 x2=1 0+1+2350 il anot 23=,-1 The eigenvector of $\lambda = -1$ is 0 1 -1 SFE 11-1-1-1

SPB_ DATE : 15 Case (iii) I A = -1 $(A - \lambda I) X = O$ 0411 21 ١ 0 5 0+1 1-0 1 22 0 141 0 0 XZ 0 × 1 21 1 1 , Ø = 0 1 1 t 22 1 1 1 X3 · 0 · x1+x2+x2 =0 (1) x1 + x/2 + x3 =0 0 71772+23=0:00 Three equations are same -: we desume 21 = 1 x3=0 1 + 2 + 0 = 0. . . x2 = -1 The eigenvector $\varphi \lambda = -1$ 1 is -1 D The eigenvector matrix is B = 1.50 514 15 and and the -1 1...-1 D 1.6 3.5 Normalised matrix ÷ , 0 00 112+12 N = 112-12 $\frac{1}{\sqrt{\frac{2}{12}}} \frac{-1}{\sqrt{\frac{2}{12}}} \frac{-1}{\sqrt{\frac{2}{12}}}$ V12+12+(+1)2-V17+(-1)2 +(-1)2

-SPB-DATE : 1/2 t 0 NE 50 1 1 =1 53 V2 -1 0 1 -12 13 1 NT = 1 -1-0 52 1 12 0 V3 Diagonised mating . 1 $D = N^T A N$ 1 12 0 10 13 0 1 52 D = 0 1-= 1/2 1 0 53 0 1/2 0 1 12 1-1-2 Ο 0 South J. - 1 2 Ø 1. 11.00 D = 0 0 - 11 0. 0 0 -1 : 1.₃ Canonical form, 6 C = YTDY Y3 2 3, 32 ч, 0 0 (= 42 0 -1 0 43 0 0 - 1 1 C = y, $ay_1 - y_2$ - 42 42 Y3 24, - 4,2 Y32 C = SPE 15

SPB_ DATE : 1. 1.1 13. $\hat{y} + f(x) = \sqrt{x} - 4fx$ (b) 14 $f(x) = (x)^{1/2} -$ (x)14 -1 2-1 $\frac{1}{4}(x)$ -f'(x) =a 1 $\frac{-1}{2}(\alpha)$ - 4(x 1/4 -1 $\frac{1}{2}\chi^{-3/4}$ 1 2 X 3 Ξ 13 3/4 22 2 ·x 3 1. -3/4 0 14 2x 4 To find critical point f'(x) = 0 $\frac{1}{4} 20^{-3/4} = 0^{-3/4}$. · (1) 21/2 -2 ~-3/4 1 2 x 4 -1 4 _0 2x =1 = 0 100 . 2-24 = 1 1.1 3 214 2 $\chi =$ 1.S. 24. 15 16 . 19 1 16 f(to) = 175 - 4/16 4 ·1×2 2×2 - 2 -1 4 4

SPB-DATE : f(ta) is maximum. $f(\frac{1}{16}) = -\frac{1}{4} < 0$ $f''(x) = \frac{1}{2} \left(\frac{-1}{2}\right) x^{-V_2} f$ 4 $\frac{1}{4}$ 2 $\left(\frac{-3}{4}\right)$ 20 $= \frac{1}{2} \times \frac{-1}{2} \times \frac{-3}{2} - \frac{1}{4} \times \frac{-3}{4}$ -714 x $\frac{-1}{4} x^{\frac{-3}{2}} + \frac{3}{16} x$ -7/4 $\frac{1}{1 - x^{-7/4}} - \frac{1}{2 - x^{-7/4}} + \frac{3}{4} = \frac{3}{4}$ $\frac{f''(16) - i}{4(16)} - \frac{1}{-(16)} + \frac{1}$ - 1×2 2×2 3 = 1 x +28 = 8 > 0 . f is maximum. (ii) $y = x^{3/2} \sqrt{x^2 + 1}$ (3x+2)⁵ Take log on both sides log 2 3/2 Jx 3/1 log y = (3x+2)5 Keig log a = loga - logb log ab = log a + log b

-SPB-DATE : logy - log x 3/2 + log Vx +1 - log [(3x+2)5 Diff with respect to oc 3/2 <u>dy ·-</u> dx x $\sqrt{\chi^2 + 1}$ 3 tog x + log 1x2+1. log y = dy 2 y dx 5 log 132+ ·dy $\frac{1}{2\sqrt{\chi^2+1}}$ x 2x - 5 10 3x+2 З 4 dx 2 15 3 dy 2x y dx ax 21/27-11 32+2 - dy dx ty 3 $\frac{\chi}{\sqrt{\chi^2+1}}$ 15 an 32+2 1 ٢ dy dx $\frac{\alpha}{\sqrt{\chi^2+1}}$ 15 82. 3x+2 $\chi^{7/2} \sqrt{\chi^2 + 1}$ dy dx 3 $\frac{\alpha}{\sqrt{\chi^2 + 1}}$ 15 $(3x+2)^{5}$ ax 31+ 14 (i) $u = \log (x^2 + y^2 + z^2)$ find $\frac{\partial^2 y}{\partial x^2}$ 200 (b) 24 242 501 $u = \log(x^2 + y^2 + z^2)$ (22) 24 22 (x2+y2+z2) · GN See fre

SPB-DATE : 24 22 2x $(\chi^2 + y^2 + z^2)$ $\frac{\partial^2 u}{\partial \chi^2}$ $\frac{(\chi^2 + y^2 + z^2)(\chi) - (2\chi)(2\chi)}{(\chi^2 + y^2 + z^2)^2}$ $= \frac{2x^{2} + 2y^{2} + 2z^{2} - 4x^{2}}{(x^{2} + y^{2} + z^{2})^{2}}$ 224 $\frac{-2\chi^{2} + 2y^{2} + 2z^{2}}{(\chi^{2} + y^{2} + z^{2})^{2}}$ 2x2 24 $x^2 + y^2 + z^2$ Zy $\partial^2 u$ $(\pi^2 + y^2 + z^2)(z) - (ay)(zy)$ 22/2 $(\pi^2 + y^2 + z^2)^2$ $\frac{2x^{2}+2y^{2}+2z^{2}-4y^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $= \frac{2y^{2} + 2x^{2} + 2z^{2}}{(x^{2} + y^{2} + z^{2})^{2}}$ $\frac{(2Z)}{\chi^2 + y^2 + Z^2}$ 24 22 $\frac{(x^{2}+y^{2}+z^{2})(2)-(2z)(2z)}{(x^{2}+y^{2}+z^{2})^{2}}$ 224 222 $2x^{2}+2y^{2}+2z^{2}-4z^{2}$ $(\chi^2 + y^2 + z^2)^2$ $= -2z^{2} + 2x^{2} + 2y^{2}$ $(x^{2} + y^{2} + z^{2})^{2}$ SPE

SPB-DATE : $\frac{\partial^2 u}{\partial z^2} - \frac{-\partial x^2 + 2y^2 + 2z^2}{(\eta^2 + y^2 + z^2)^2}$ 220 242 $\partial^2 u$ 222 $\frac{-2y^2+2x^2+2z^2}{(x^2+y^2+z^2)^2}$ $= 22^{2} + 2x^{2} + 2y^{2}$ $(x^2 + y^2 + z^2)^2$ $-3\chi^{2} + 2y^{2} + 2z^{2} - 2y^{2} + 2z^{2} +$ = 2x2-2x2+2y2 $(\chi^2 + y^2 + z^2)^2$ $2(x^2 + y^2 + z^2)$ $(\pi^2 + y^2 + z^2)$ 92U -. 22y 224 2 2y2 222 722 $(\gamma^2 + \gamma^2 + z^2)$ (ii) find maxime and minima $f(x, y) = x^3y^2(1-x-y)$ Sdr $\frac{f(x, y) = x^{3}y^{2}(1 - x - y)}{= x^{3}y^{2} - x^{4}y^{2} - x^{3}y^{3}}$ $\partial f = 3x^2y^2 - 4x^3y^2 - 3x^2y^3$ $3x^{3}y - 3x^{4}y - 3x^{3}y^{2}$ 24 24 2f 6xy2-12x2y276xy3 2x2 $\partial^2 f$ $8x^3 - 3x^4 - 6x^3y$ 2y2

-SPB-DATE : $\frac{\partial^2 f}{\partial x \partial y} = 6x^2y - 8x^3y - 9x^2y^2$ Potom of $3x^2y^2 - 4x^3y^2 - 3x^2y^3$ $= \frac{x^2y^2(3 - 4x - 3y)}{-x^2y^2(3 - 4x - 3y)}$ $x^2y^2 = 0$ 3-4x-3y = 0 $\chi = 0$ and y = 0 4x + 3y = 3 - 0 $\frac{\partial f}{\partial y} \rightarrow \frac{\partial \chi^{3} y}{\partial y} - \frac{2\chi^{4} y}{2\chi^{4} y} - \frac{3\chi^{3} y^{2}}{2\chi^{4} y}$ form_ $= \chi^{3} \psi \left(\tilde{2} + 2\chi - 3\psi \right)$ $x^{3}y=0$ 2-2x-3y=0 x=0 and y=0 = 2x+3y=2-2. Solving eqn Of O $2\chi = 1$ $x = \frac{1}{2}$ $\frac{\operatorname{Sub} x = 1}{2} \operatorname{in} \operatorname{OP}$ $4(\frac{1}{3}) + 3y = 3$ 2 + 3y = 33y = 3 - 234=1 1.y = 1

-SPB-DATE : The stationary points are (0,0) and 1 $AC-B^2=O$ X 6 x A =6 a 2 Ex 6X 1 93 3 4 2 27 a < 0 A = 9 2 2×1 4 6 284 K X 2x 168 8 3 ×0 8 0 8 2783 B2 36x4y2- 64x5y2- 81x4y4 = 36 X 2 1 64 2 3 = 36 X 32 64 X -,81 x 164 g 32 9 16 2 4 16 9 1×36 -2×16 IXY 4×36 9×16 16×9 1, 1 36-32-9 11 144 144 20 114 Page 4

$$A C - B^{2} = 0$$

$$= -\frac{1}{q} \times -\frac{1}{8} + \frac{5}{144}$$

$$= -\frac{1}{72} + \frac{5}{144}$$

$$= -\frac{1}{72} + \frac{5}{144}$$

$$= -\frac{2}{72} + \frac{5}{144}$$

$$= -\frac{2}{72} + \frac{5}{144}$$

$$= -\frac{1}{72} + \frac{5}{144}$$

$$= -\frac{1}{72} + \frac{5}{144}$$

$$= -\frac{1}{72} + \frac{1}{144}$$

$$= -\frac{1}{72} - \frac{1}{144}$$

$$= -\frac{1}{72} - \frac{1}{6} - \frac{1}{2} - \frac{1}{3}$$

$$= -\frac{1}{72} - \frac{1}{6} - \frac{1}{6} - \frac{1}{2} - \frac{1}{3}$$

$$= -\frac{1}{72} - \frac{1}{6} - \frac{1}{6} - \frac{1}{6} - \frac{1}{6} - \frac{1}{2} - \frac{1}{3}$$

$$= -\frac{1}{72} - \frac{1}{6} - \frac{1}{7} - \frac{1}{6} - \frac{1}{7} - \frac{1}{6} - \frac{1}{7} - \frac{1}{7$$

DAVIN / / $= \chi^3 \left(1 - \frac{y^3}{x^3} \right)$ - N - N $\frac{\chi \left(1 + \frac{y}{\chi}\right)}{\left(1 - \frac{y^3}{\chi^3}\right)}$ $= \frac{\chi^2 \left(1 - \frac{y^3}{\chi^3}\right)}{\left(1 + \frac{y}{\chi}\right)}$ By Juler's theorem Z is an homogenous function of degree $\mathcal{X} = \frac{\partial y}{\partial x} + y = \frac{\partial y}{\partial y} = nz$ $\mathcal{X} \cdot \frac{\partial \mathbf{x}}{\partial \mathbf{x}} + \mathbf{y} \cdot \frac{\partial \mathbf{z}}{\partial \mathbf{y}} = \mathbf{g} \cdot \mathbf{z}$ $x. \cos u = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = \frac{\partial u}{\partial y} = \frac{\partial u}{\partial y} = \frac{\partial u}{\partial y} = \frac{\partial u}{\partial y}$ C CES. cosu $\mathcal{N}G.\mathcal{C} + \mathcal{N}G.\mathcal{C} + \mathcal{N$ 3, tan U Hence proved (ii) Using Taylor's Services $F(x,y) = x^2 y + \sin y + e^x \quad (1,\pi)$ $F(x, y) = x^2 y + \sin y + e^{x}$ $f(a, b) = ((1, \pi))$

6-8121 I I $F(1, \pi) = 1^{2}\pi + \sin \pi + e^{1}\pi$ $= \pi + 0 + e$ $= \pi + e$ $f_{\chi}(\chi, y) = \Im \chi y + e \chi - f_{\chi}(I, \pi) = \Im(I)(\pi) + e'$ = 211+0 $f_{y}(x_{y}) = x^{2} + c_{esy}$ $f_{y}(1, \pi) = 1 + \cos \pi$ \mathcal{I}) $\dot{f}_{xx}(I,\Pi) = \mathcal{A}\Pi + e^{I}$ fxx (x,y)= 2y+ = 2TT + C fyy(x,y) = -siny $fyy(i,\pi) = -sin(\pi)$ $f_{xxy}(x,y) = a + e^{x} f_{xxy}(1,TI) = a + e$ fyga (1, TT) = - Cos TT -fyyx (x,y) = - cosy = -1(-1) = 1By using Taylor's series. $F(x, y) = \frac{1}{1!} \left[(x-a) f_x(a, b) + (y-b) f_y(a, b) \right]$ $+ \frac{1}{2} \left((x-a)^2 f_{XX}(a,b) + \right)$ $2(x-\alpha)(y-b) fxx(a,b)$ + (y-5) fyy (a, b) (7... $= (1, \pi) + \frac{1}{1!} \left[(2\pi - 1)(2\pi + e) + (y - \pi)(-1) \right]$ + $\frac{1}{2!} \left[(\chi - 1)^2 (2\pi + e) + 2(\chi - 1)(y - \pi) \right]$ (2) + $(Y - \pi)^2 (0) + \dots$

DATE / / 1 $= (\pi i) = (\pi i) =$ $(x-1)(2\pi+e)+2(x-1)(y-\pi)$ (2)+0 +... PART-A (March) 7. 3 3. 2×2 matrix $\frac{x_2}{x_2} = \frac{1}{1}$ -Χ, 17 293 - (11 . 1) p 7. 1-1 - (A=) 9 + · (*, $\mathcal{A}(1)$ - 1.9 T (mini = (1 , 1) 10 + 2 + 2 232=- (A) 10 , 5) pul-+ 23 = (-1-1) 8 + 2+23=-2 9 4 3 - (11-1) pres-1x 3 3 = -2 (1.2) provil- $\lambda_3 = -14$ = (T = 1 + - 2019)-17 29 very? · [v. y] : x. a) fact (a A. (X- CO(8-6) + ((A. 6) F(1-)(1-2)+(3+11-2)(1-2)/(1-2)/(1-2) (11-E)(1-10) Ex (3+10) (1-x) 10 - ... · ((0) (17 - P) + (2)

5/ -10 DATE / / 200 Subject : Matrices and calculus. Name : S. Sanmathi. pepartment: B.E.CSE. Subject code: MA3151. dars : B. slip test : i. Date: 26.10. 2024. mailio amarch : 1. $y = (x^3 - 1)^{100}$. solution : Conven $y = (x^3 - 1)^{100}$ $2 g(x) = 1 - x^3$ $g'(x) = 0 - 3x^2$ $= -3x^2$ 0 9. Janmathy. here ate Civis $f(x) = [g(x)]^{100}$ $f'(x) = 100 [g(x)]^{99} g'(x)$ = 100 (1-x³)⁹⁹ (-3x²) o 2. $\mathcal{G}(\mathbf{x}) = \frac{\mathbf{x} - \mathbf{4}}{\mathbf{x}^2 - \mathbf{q}}.$ solution : buven $f(x) = \frac{x-4}{x^2-a}$ $\mathbb{I}_{f} = \chi^2 - 9 = 0.$ $\chi^2 = q.$. 0 N $x = \pm \sqrt{q}$ X = ± 3. 330 m $x = \pm 3$ is not idefined. TI -3 ÷ ₹ æ TNPI 00

Large DATE / / Damain : (-00,-3) U (-3,3) U (3,00). $y = x^{2}at$ (1,1). 1. Solution : 1345/11 ouver $y = x^2$ E and the 13 autolas $S(\varkappa) = \varkappa^2 = (1,1).$ $M = f'(a) = \lim_{x \to 1} f(x) - f(a)$ $M = S'(1) = \lim_{x \to \infty} S(x) - S(1)$ $\frac{2c^2 - (1)^2}{2c - 1}$ =ilem x→1 $= \lim_{x \to 1} (x+1)(x+1) + \infty$ Solution =lim (x+1) THE 9787 D. - 1+1 M = 2. equation The are. $(y-y_1) = M(x-x_1)$ (y-1) = 2(x-1)11

-THPL-DATE $y - 1 = 2\chi - 2$. $dx - 2 = y \neq 1 = 0.$ targent equation area The 2x - y + 1 = 0enio and 2. $C\chi^2 + 2\chi$, $\chi < 2$ f(x) = di-ve $x^3 - cx$, $x \geq 2$. solution. solution: cx2+2:21, 212 Geven f(x)= x3_cx, x22. Krit June $\mathcal{F}(\mathbf{x}) = \lim_{\mathbf{x} \to 2^{-}} C \mathbf{x}^{2} + 2 \mathbf{x}.$ lim 2->2 d. - ivis $= C(2)^{2} + 2(2),$ YO. SAC + 4 - $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} x^3 - cx$ x->2+ $= (2)^3 - c(2)$. is continuous at (-∞,∞). Limit is oxist. left side limet and right side limit equal. 1, S, V = R.S. I.AC+4 = 8-20 $\frac{-5-2c}{4c+2c} = 8-4$

-TNPL-DATE 1 1 -6c = 4. $C = A^{2}$ 1 Jacks of the 11 U. 1.1.4 2 3 · 1 $\lim_{x \to 0} \frac{\sin x}{x}$ 3. 122 12 62 (*)2 - C % , X > 2. N. 3 solution : Relation buren lim sinx mano f(x) = SinxX 21. $-g(x) = \lim_{x \to \infty} \sin x$ C - K 2040-2. . N. - -= lim sino 2-20 0, a 10)4 art. 0 037 6101 lim COSOL 30 20+20 X lini 2-70 1950 000 1 K.11 11.1 ţ =1. 1 1 1

DATE / / 4. $\dim 1 + \cos 2\pi$ $\pi \rightarrow \pi$ $(\pi - 2\pi)^2$ solution : buven, $\lim_{n \to \frac{11}{2}} \frac{1+\cos 2\pi}{(\pi - 2\pi)^2}$ $\lim_{\substack{\mathcal{H} \neq \frac{\pi}{2}}} \frac{1+\cos\pi}{(\pi+\pi)^2}$ $= \lim_{\chi \to \frac{\pi}{2}} \frac{1}{0}$ = 1-1 0, lim = - &Sin 2x(T-276)2 -asinT (Π−Π)² -2 -12. A TNPL

2 - partite class: Sec'B' Name: M. Thörumwugan Subject: Matrices and Calarlas Sub (ode: MA31 51 Pate: 20 [1] 24 Department: CSE Regustor NO: 7384 104107 Slip Test : 4 1) State mean value From other words Mean Value Theorem I, is a point aneous The interval (a, b) of MUT in The instaneous rate of Change of function f'((c)) is gral to rate of change of fu netion The entine of Ca, b] average Ortifical point y= = 5 x3 - 6x -f(x)=5x3-6x -f (x)= 13x2-6 f'(2)=0 - [522 1522 × 8=0 15 n.R. 22- 62 35 TNPL

- TSOPL -DATA 1 1 X- + 12 5 & mark Gues y. 1. ret xy+y 2-) 4 2(2) ÷ .' i, 0 == (2 2+2 y+2 3)=0 dre 1 d re = (2-4) -1 1 • ł 1 ŝ

Content beyond the Syllabus

- The eigenvalues are used to determine the natural frequencies (or eigenfrequencies) of vibration, and the eigenvectors determine the shapes of these vibrational modes. Most structures from buildings to bridges have a natural frequency of vibration. Eigenvalues can also be used to test for cracks or deformities in structural components used for construction. Model population growth using an age transition matrix and an age distribution vector, and find a stable age distribution vector. Use a matrix equation to solve a system of first-order linear differential equations. Find the matrix of a quadratic form and use the Principal AxesTheorem to perform a rotation of axes for a conic and a quadric surface.
- There are many applications of sequences. To solve problems involving sequences, it is a good strategy to list the first few terms, and look for a pattern that aids in obtaining the general term. When the general term is found, then one can find any term in the sequence without writing all the preceding terms. Sequences are useful in our daily lives as well as in higher mathematics. For example, the interest portion of monthly payments made to pay off an automobile or home loan, and the list of maximum daily temperatures in one area for a month is sequences.
- There was not a good enough understanding of how the Earth, stars and planets moved with respect to each other. Calculus (differentiation and integration) was developed to improve this understanding. We use the derivative to determine the maximum and minimum values of particular functions (e.g. cost, strength, amount of material used in a building, profit, loss, etc.).
- 1. Derivatives are met in many engineering and science problems, especially when modeling the behavior of moving objects.
- 2. It is used ECONOMIC a lot, calculus is also a base of economics. In economics, calculus is used to compute marginal cost and marginal revenue, enabling economists to predict maximum profit in a specific setting.
- 3. The **Petronas Towers** in Kuala Lumpur experience high forces due to winds. **Integration** was used to design the building for strength.

4. The **Sydney Opera House** is a very unusual design based on slices out of a ball. Many **differential equations** (one type of integration) were solved in the design of this building.

5. Historically, one of the first uses of integration was in finding the volumes of wine-casks (which have a curved surface).

6. It is used in history, for predicting the life of a stone.

7. The newbie, **PID controller** is a control loop feedback mechanism (controller) widely used in industrial control systems.

8. Applications of the Indefinite Integral shows how to find displacement (from velocity) and velocity (from acceleration) using the indefinite integral.

• Taylor's series is an essential theoretical tool in computational science and approximation. One application is to use series to approximate solutions to differential equations. In many cases, solving for a given variable outright can be very difficult or even impossible. Representing the variable as a Taylor Series, it is far easier to approximate a solution around a particular point.

• One of the major applications of multiple integrals in engineering, particularly structures and mechanics, is the determination of properties of plane (i.e. effectively 2-D) and solid (i.e. 3-D) bodies – their volume, mass, centre of gravity, moment of inertia, etc.

- 1. In mechanics, the moment of Inertia is calculated as the volume integral (triple integral) of the density weighed with the square of the distance from the axis.
- 2. In electromagnetism, Maxwell's equations can be written using multiple integrals to calculate the total magnetic and electric fields.

Tutorial Question Paper

Tutorial – 01		Date of Issue:	09.10.2024	Marks	10	
Course code	MA3151	Course Title	Matrices And Calculus			
Year	I	Semester/Section	I / All Branches	Date of Submission:	23.10.2	.024

Q.No	Questions	CO
1	Find the domain of the function $f(x) = \frac{2x^3-5}{x^3+x-6}$	CO 2
2	Find the local maxima and minima of $f(x) = \sqrt{x} - \sqrt[4]{x}$	CO 2

ectionan am.

0

Joevanan Jam.

HoD/S&H

Tutorial Answer Sheet

732424104067

Name of the Student :

- ----

Monisha. N.P

AU Register Number:

	Tutorial -	- 01	Date of Issue:	09.10.2024	Marks	10
Course code	MA3151	Course Title	Matrices And Calculus			L
Year	Ι	Semester/Section	I / All Branches	Date of Submission:	23.10).2024
Q.No		Ques	tions			CO

Q.No	Questions	CO
1	Find the domain of the function $f(x) = \frac{2x^3-5}{x^2+x-\epsilon}$	CO 2
2	Find the local maxima and minima of $f(x) = \sqrt{x} - \sqrt[4]{x}$	CO 2

Mark Allocation

Rubrics	Marks Allocated	Marks obtained
Problem solving approach	6	6
Correctness of Answer	2	2
Timely submission	2	2
Total marks	10	10

J. Storenantoury.

HoÐ/S&H

DATE / / Find the domain of the function f(x) = 2x³-5 x2 +x-6 solution. Ser L. r & Fork. let $x^2+x-b=0$ · · ···· (x+3) (x-2)=0 x+3=0 x-2=0 x=-3 2C=2 then the function is not debined -00 -3 2 00 $\chi \in (-\infty, -3) \cup (-3, 2) \cup (2, \infty)$ Find the local maxima and minima ob fin - Vx - AVX Solution! Cinen. f(x)=Vx=AV5c losilis 2.11 $f(x)=(x)^{\frac{1}{2}}-(x)^{\frac{1}{4}}$ $f'(x) = \frac{1}{2}(3c)^{\frac{1}{2}} - \frac{1}{4}(x)^{\frac{1}{4}}$ -3/4 $=\frac{1}{2}(x)^{2}-\frac{1}{4}(x)$ $= \frac{1}{4} x^{-\frac{3}{4}} (2x^{1/4} - 1)$ ATNPI

DATE $= \frac{1}{2} x^{-3} + (2x^{-1})$ f'(x)=1/4 x 4 (2x 4-1) Monthly. find Critical number TO E'(x) = 0 1/4 x -3/4 (2x 1/4-1) =0 $2x^{1/4} - 1 = 0$ 224=13 x'4=12 $x = (\frac{1}{2})^4$ 29 = /16 the Grifical number x = V16 The First deributive test S(116) = V/16 - AV16 $=\left(\frac{1}{4^{\pi}}\right)^{\frac{1}{2}}-\left(\frac{1}{2^{\pi}}\right)^{\frac{1}{2}}$ RN-A ×2 2 $\frac{1-2}{4}$

DATE / / =-1/4 <0 S(1/16) = -1/220 : 5 is local minimum F(Y16) = - 1/24 The second derivative test $f''(x) = \frac{1}{2} \left(\frac{-1}{2}\right) x^{-\frac{1}{2}} - 1 - \frac{1}{4} \left(\frac{-3}{4}\right) x^{-\frac{3}{4}} - 1$ =-4x14 (-x4x34) = 1/4 x 1/4 (-4x 1/4+3) $= \frac{1}{16} \cdot \frac{1}{26} \cdot \frac{1}{4} \left(-4x^{4} + 3 \right)$ $f''(Y_{16}) = \frac{1}{16} (\frac{1}{16})^{-1/4} (-4 (Y_{16})^{1/4} + 3)$ $= Y_{16}(\frac{1}{2}+)(-4(\frac{1}{2})+3)$ = 1/16 (+28) (-2+3) = 870 local minimum at x=1/b The local minimum value of f(1/16)=1/4 ATNPL

Tutorial Question Paper

Tutorial – 02		Date of	02.12.2024	Marks	10	
_		Issue:				
Course	MA3151	Course Title	Matrices And Calculus			
code			I / All	Date of	13.12.2	024
Year	I	Semester/Section	Branches	Submission:	13.12.2	.024

Q.No	Questions	CO
1	Evaluate $\int_{1}^{2} \int_{2}^{5} xy dy dx$	CO 5
2	Find the volume of sphere $x^2 + y^2 + z^2 = 25$ using triple integral	CO 5

reevanin em. first Faculty Incharge Name and Sig

HoD/S&H

Tutorial Answer Sheet

Name of the Student : Swe Hay, N.

AU Register Number:

AU	Register Nun	ber: 732424	polloy			
	Tutorial – 02			02.12.2024	Marks	10
			Issue:			
Course	MA3151	Course Title	Matrices And Calculus			
code						
Year I Semester/Section		I / All	Date of	13.12	.2024	
		-	Branches	Submission:		

Q.No	Questions	CO
1 .		
	Evaluate $\int_{1}^{2} \int_{2}^{5} xy dy dx$	CO 5
2	Find the volume of sphere $x^2 + y^2 + z^2 = 25$ using triple integral	CO 5

Mark Allocation

Rubrics	Marks Allocated	Marks obtained		
Problem solving approach	6	b		
Correctness of Answer	2	2		
Timely submission	2	2		
Total marks	10	10		

reverar

HoD/S&H

SPB DATE : 2 5 dy dydr Evaluate (\mathbf{I}) Solution • . 2 5 2 5 doi ry dy dr = x T set 1º 2 $-\frac{4}{2}$) dot \mathbf{z} 2 14 51 726 · 0 V $\begin{bmatrix} \frac{\gamma^2}{2} \\ 2 \end{bmatrix}$ $\frac{221}{2}$ 21-2 1.74 = b3/4 Find the volume of sphere (or) find the volume of sphere $y^2 + y^2 + z^2 = 25$ using biple integration (x) find the volume of sphere $x^2 + y^2 + z^2 = 25$ $\overline{\mathcal{D}}$ 25 Solution: the limit ane/ 5 1-) a-> a y-0-) Va2-22 Z=0-> Va2+22-42

SPB DATE : volume of shone = V = 8 ff dady dz $\int a \int \sqrt{a^2 + 1^2} \sqrt{a^2 + 1^2 - y^2}$ = 8 dady dz 10 0 9 Ja2+22 Ja2+212-y2 =8 [Z] dxdy 0 , Va2+22 a2+x2-y2) droly - 1. with. $\sqrt{a^2 - \chi^2} d\chi = \frac{\chi}{2} \sqrt{a^2 - \chi^2} + \frac{\alpha^2}{2} \sin^{-1}(2/a) + C$ Jo 4/2 Va2 1 22 1 a2-22 0-1 28 a Va2_22 $a_{-2}^{2} - (a_{-2}^{2}) +$ Ο 2 • • Vazza a -22 -D 2 Va2-22 · Jazz2 8 Ż $(0) + a^2 - x^2 \sin^{-1}(1)$ di az Q 801 a=2) dot Ú Ô

	DATE :
$= \frac{8\pi}{4} (a^2)$	$3 - a^{3} - 10$
$= \frac{8\pi}{L1} G$	203
$= 2\pi \left(\frac{1}{2} \right)$	$\frac{2a^3}{3}$
	3
≥)V=52	<u>n</u>

Faculty: G. Foevanan Kan. ASSIGNMENT SCHEDULE subject : Matrices and Calculus Year : I Semester : T Department : CSE

S.No	Particulars	Target Date
	ergenvalues andeizen Vector	24.10.24
2	Differentialan Integral.	02.12.2024.
3		<u> </u>

×	Prepared by	Verified by
Sign	SE	1910
Name	Green Com	H. Cathyle
0. 20.	Greenant Cons. Faculty	нор

Assignment Question Paper

	Assignment – 0	1	Date of Issue:	05.10.2024	Marks	10
Course code	MA3151	Course Title	MATRICES AND CALCULUS			
Year	I	Semester/Section	I/B	Date of Submission:	21.1	10.24

Q.No	Questions	CO
1	Find the eigen values & eigen vectors of the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{pmatrix}.$	C101.1
2	Find the eigen values & eigen vectors of the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.	C101.1

J. Fearman Kann. Name and Signature of the Faculty Incharge

的基本人生民族的情绪的最近,中国市中国主义

an and a state of the second s

HoD/S&H

Assignment Answer Sheet

Name of the Student : 11. Vignesh

AU Register Number: 732424101, 113

	Assignment – 0	1	Date of Issue:	05.10.2024	Marks	10
Course code	МАЗ151	Course Title	МАТ	RICES AND CALCI	JLUS	
Year	I	Semester/Section	I/B	Date of Submission:	21.10).24

Q.No	Questions	CO
1	Find the eigen values & eigen vectors of the matrix $\Lambda = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{pmatrix}$.	C101.1
2	Find the eigen values & eigen vectors of the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.	C101.1

Mark Allocation

Rubrics	Marks Allocated	Marks obtained
Content Quality	6	6
Presentation Quality	2	1
Timely submission	2	2_
Total marks	10	9

Jeevarantan. 21/10/2024

If two eigen well obtain Notifix

$$A = \begin{bmatrix} 2 & 21 \\ 1 & 31 \\ 1 & 22 \end{bmatrix}$$
and copyed to each 1 find the
eigen notice of A⁻¹
The $\begin{bmatrix} 2 & 21 \\ 1 & 31 \\ 1 & 12 \end{bmatrix}$
All = 1, $A_2 = 2$
to Find $A_3 = 0$
Sum of two Cive T Nove of A
Alt + $A_2 = A_3 = 2$
 $A_3 = 5$
Alt = 1, $A_2 = 3$
 $A_3 = 5$
Alt = 1, $A_3 = 3$
 $A_4 = 5$
 $A_{12} = A_3$
 $A_{12} = A_3$
 $A_{13} = A_4$
 $A_{14} = A_3$
 $A_{14} = A_3$
 $A_{15} = A_4$
 $A_{15} = 3$
 $A_{15} = A_5$
 $A_{15} = A_$

2mourks: -Ð whithe the Statement of Carylory - Hamilton theorem:-Solu! Every severe moutrix sortistical its own characteristic equation. Zt is eigen value at A then prove that 22 is Solu'. Criven dis eigen volue et n we know that $(A - \lambda I) x = 0$ AX-AIXED Ax-XX=0 Ax=xx->0 Premultiple by A A (AZ) = AZX AZX = ADX A2x= NAX From connation () $A^2 x = \lambda (\lambda x) \quad A^2 x = \lambda^2 x$ 72 is eight walve of A2 Hence phoneol. 8 martles! -Find the eigen would end eigen vector at the A= [1 1 1 021 Criven A=

the chractingtic equation are | A-XE =0 (ie) 13-5, 12+521-53=0 51 = 11213 51=6 $S_{2} = [2 \ 1] + [1 \ 1] + [1 \ 1] + [1 \ 1] + [0 \ 2]$ = (b-4)+(3+4)+(G-0) = 2+7+2 S2=11 $S_{3} = 1 \begin{vmatrix} 2 \\ 4 \\ 3 \end{vmatrix} - 1 \begin{vmatrix} 0 \\ - \\ - \\ 4 \\ 3 \end{vmatrix} + 1 \begin{vmatrix} 0 \\ 2 \\ - \\ 4 \\ 4 \end{vmatrix}$ = 1(6-4)-1(0+4)+1(0-8)= 1(2) -1.(47+8 53 =6 Case 1 !- x=1 $\begin{vmatrix} 1-1 & 1 \\ 0 \\ 2-1 \\ 1 \\ x_2 = 0 \end{vmatrix}$ $\begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 21 \\ 222 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 0x1+x2+x3=0 Ox1 + x2 + x3=0 - XX1 + 47/2+ 2×3=0 $\frac{x}{2-4} = \frac{x_2}{-4+0} = \frac{x_3}{0+4}$

$$\frac{\pi}{-2} = \frac{\pi}{-2} = \frac{\pi}{2}$$

$$\frac{\pi}{-2} = \frac{\pi}{2} = \frac{\pi}{2}$$

$$\frac{\pi}{2} = \frac{\pi}{2} = \frac{\pi}{2} = \frac{\pi}{2}$$

$$\frac{\pi}{2} = \frac{\pi}{2} = \frac$$

The eligen work or of
$$\lambda = 3$$
 is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
Find the eigen work or of $\lambda = 3$ is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
Matrix $B = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$
Other $B = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$
This characterize equation
 $B = \lambda T = 0$
Geo $\lambda^3 - 5i \lambda^2 + 52 \lambda - 5g = 0$
 $5i = 1454i$
 $\begin{bmatrix} 5i = 7i \\ 1 & 1 & 1 \\ 3 & 1 & 1 & 5 \end{bmatrix}$
 $= (5-0) + (1-9) + (5-1)$
 $= 4i-844i$
 $= 8-8$
 $S3 = 1 \begin{bmatrix} 5 & 1 \\ 1 & 1 \\ 3 & 1 & 1 & 1 & 5 \end{bmatrix}$
 $= 1 (5-1) - 1 (1-3) + 3(1-15)$
 $= 1 (4i - 1(-2) + 3 (-1ii))$
 $= 1 (4i - 1(-2) + 3 (-1ii))$
 $= Ai - 2 - 42$
 $S_7 = -36$ the characterization for $\lambda = -7k^2 + 0 + 136 = 0$
 $6 \begin{bmatrix} 1 & -7 & 0 & 36 \\ 0 & 5 & -5 & -36 \\ 1 & -1 & -6 \end{bmatrix} 0$

$$\lambda = 6, \ h^{n-b} = 0$$

$$\lambda = 6, \ h^{n-b} = 0$$

$$\lambda = 6, \ \lambda = 3, \ h = 2$$

$$The eligen walks are h = -2, 3, 6$$

$$Cax(1) = t + h = -2$$

$$[A - hT] = 0$$

$$[A - (-2) T] = 0$$

$$[A + 2T] = 0$$

$$[A + 2T] = 0$$

$$[A + 2T] = 0$$

$$\begin{bmatrix} 1+2 & 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 5+2 & 1 & 3 & 3 & 3 & 3 & 3 \\ 1 & 5+2 & 1 & 3 & 3 & 3 & 3 & 3 \\ 1 & 5+2 & 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 7 & 3 & 3 & 1 \\ 7 & 1 & 1 & 7 & 7 & 7 & 3 & 7 & 3 \\ \hline \frac{x_1}{-20} = \frac{x_2}{-3-3} = \frac{x_3}{-21-7} \\ \frac{x_1}{-20} = \frac{x_2}{-0} = \frac{x_3}{-1} \\ The - eigen we dow of M = -2 & 18 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Cover 2:-

$$k = 3$$

$$\begin{bmatrix} 1-3 & i & 3 \\ i & 5-3 & i \\ 3 & i & 1-7 \end{bmatrix} \begin{bmatrix} 9i \\ 7x_{2} \\ 7y_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 3 \\ i & 2 & i \\ 3 & i & -2 \end{bmatrix} \begin{bmatrix} 7x_{1} \\ 7x_{2} \\ 7y_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-2x_{1} + x_{2} + 3x_{3} = 0$$

$$3x_{1} + x_{2} - 2x_{3} = 0$$

$$x_{1} = \frac{x_{2}}{3+2} = \frac{x_{3}}{-1}$$

$$\frac{x_{1}}{1+b} = \frac{x_{2}}{3+2} = \frac{x_{3}}{-1}$$

$$\frac{x_{1}}{1+b} = \frac{x_{2}}{5} = \frac{x_{3}}{-5}$$

$$\frac{x_{1}}{-1} = \frac{x_{2}}{5} = \frac{x_{3}}{-5}$$

$$\frac{x_{1}}{-1} = \frac{x_{2}}{5} = \frac{x_{3}}{-5}$$

$$\frac{x_{1}}{-1} = \frac{x_{2}}{-1} = \frac{x_{3}}{-1}$$

$$\frac{x_{2}}{-1} = \frac{x_{3}}{-1} = \frac{x_{3}}{-1}$$

$$\frac{x_{1}}{-1} = \frac{x_{2}}{-1} = \frac{x_{3}}{-1} = \frac{x_{3}}{-1}$$

$$\frac{x_{1}}{-1} = \frac{x_{2}}{-1} = \frac{x_{3}}{-1} = \frac{x_{3}}{-1}$$

$$\frac{211}{11} = \frac{210}{8} = \frac{73}{41}$$

$$\frac{211}{11} = \frac{210}{8} = \frac{23}{41}$$

$$\frac{211}{11} = \frac{210}{2} = \frac{23}{11}$$

$$\frac{211}{11} = \frac{210}{2} = \frac{23}{11}$$

$$\frac{211}{11} = \frac{210}{11}$$

$$\frac{11}{11} = \frac{21}{11} = \frac{210}{11}$$

$$\frac{11}{11} = \frac{21}{11} = \frac{210}{11} = \frac{210}{11}$$

$$\frac{11}{11} = \frac{11}{11} = \frac{11}{1$$

$$A^{3}-HA^{2}-JOA -351 \pm 0$$

$$A^{3}-HA^{2}-JOA -351 \pm 0$$

$$A^{3}=H^{2}A = DA^{2} \pm DA^{2} \pm DA$$

$$A^{2} = \begin{bmatrix} 1 \cdot 3 + 7 \\ H & 23 \\ I & 21 \end{bmatrix} \begin{bmatrix} 1 & 3 + 7 \\ H & 2 & 3 \\ I & 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + (2 + 7 & 3 + b + 1) H & T + 9 + 7 \\ H + 8 + 3 & 12 + H + 6 & 28 + 6 + 3 \\ I + 8 + 1 & 3 + A + 2 & -1 + 6 + 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 & 23 & 23 \\ I & 5 & 22 & 37 \\ I & 6 & 9 & I \\ I & 5 & 22 & 37 \\ I & 6 & 9 & I \\ I & 2 & 7 \\ I & 6 & 9 & I \\ I & 2 & 7 \\ I & 6 & 9 & I \\ I & 2 & 7 \\ I & 6 & 9 & I \\ I & 2 & 7 \\ I & 6 & 9 & I \\ I & 2 & 7 \\ I & 6 & 9 & I \\ I & 1 & 2 & 7 \\ I & 2 & 7 \\ I & 6 & 9 & I \\ I & 1 & 7 \\ I & 1 & 1 \\$$

9 207 = 20 $\begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 2.0 & 60 & 140 \\ 80 & 40 & 60 \\ 20 & 470 & 20 \end{bmatrix}$ $351 = 35 \begin{bmatrix} 35 & 0 & 0 \\ 0 & 35 & 0 \\ 0 & 0 & 35 \end{bmatrix}$ A3 - AA2 - JOA - 351=0 $= \begin{bmatrix} 135 & 152 & 222 \\ 140 & 163 & 208 \\ 60 & 76 & 111 \end{bmatrix} \begin{bmatrix} 80 & 92 & 92 \\ 60 & 88 & 148 \\ 40 & 36 & 56 \end{bmatrix} \begin{bmatrix} 20 & 60 & 140 \\ 80 & 40 & 60 \\ 20 & 40 & 20 \end{bmatrix} \begin{bmatrix} 35 & 0 & 0 \\ 0 & 35 & 0 \\ 0 & 0 & 35 \end{bmatrix}$ $= \begin{bmatrix} 135 - 80 - 20 - 35 \\ 140 - 60 - 80 - 0 \\ 163 - 88 - 40 - 35 \\ 208 - 148 - 60 - 0 \\ 60 + 40 - 20 - 0 \\ 76 - 36 - 20 - 0 \\ 111 - 56 - 20 - 35 \end{bmatrix}$ to Find A-1 the charactoristic equation N3-412-201-35=0 A3-4A2-20A-35I=0 Premultiple by A-1 A-1 A3 - AA-1 A3 - 20AA-1-35A-11=0 A2-4A-20I-35A-1=0 3 5A-1 = A2-HA-20

$$\begin{aligned} & P^{2} - HA - 20T - 35A^{-1} = 0 \\ & 35B^{-1} = A^{2} - HA - 20T \\ \end{aligned} \\ & 35A^{-1} = \begin{bmatrix} 20 & 23 & 23 \\ 15 & 22 & 37 \\ 10 & 9 & 14 \end{bmatrix} \begin{bmatrix} 14 & 12 & 29 \\ 16 & 8 & 12 \\ 18 & 9 & 4 \end{bmatrix} = \begin{bmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 26 \end{bmatrix} \\ A^{-1} = \frac{1}{35} \begin{bmatrix} 20 - 4 - 20 & 23 - 12 - 0 & 23 - 28 - 0 \\ 15 - 16 - 0 & 22 - 8 - 20 & 37 - 11 - 0 \\ 10 - 4r & 0 & 9 - 8 - 0 & 14 - 4r - 2D \end{bmatrix} \\ = \frac{1}{35} \begin{bmatrix} -14 & \cdot 11 & -5 \\ -1 & -6 & 25 \\ 5 & 1 & (0) \end{bmatrix} \\ \end{aligned} \\ Uertified Cally lay - Homildon theorem at the matrix \\ A^{-1} \begin{bmatrix} 1 & 1 \\ 12 - 3 \\ 2 - 13 \end{bmatrix} and find B^{-1} \\ A^{-2} \begin{bmatrix} 1 & 1 \\ 12 - 3 \\ 2 - 13 \end{bmatrix} and find B^{-1} \\ A^{-2} \begin{bmatrix} 1 & 1 \\ 12 - 3 \\ 2 - 13 \end{bmatrix} and find B^{-1} \\ A^{-2} \begin{bmatrix} 1 & 2 & 3 \\ 2 - 13 \end{bmatrix} \\ The \cdot charactritific equation ore [A - ht][co \\ 81 & = 14243 \\ S_{1} = 6 \\ S_{2} \begin{bmatrix} 2 - 3 \\ 1 & 3 \end{bmatrix} + \frac{1}{2} \frac{1}{3} \int + \frac{1}{1} \frac{1}{3} \\ = (b - 3) + (3 - 2) + (2 - 1) \\ = 3 + 1 + 1 \\ S_{2} = 5 \\ S^{2} = 1 \begin{pmatrix} 2 - 3 \\ -1 & 3 \end{pmatrix} + \frac{1}{2} \frac{1}{3} \int + \frac{1}{1} \frac{1}{1} \end{bmatrix}$$

$$= 1 (6-3) - 1 (3+5) + 1 (-1-1)$$

$$= 1 (3) - 1 (3+5) + 1 (-1-1)$$

$$= 1 (3) - 1 (3+5) + 1 (-6)$$

$$= 3 - 9 - 5$$

$$\int_{3}^{3} - 5 h^{2} + 5 h + 11 = 0$$
by could by themilten theorem
Eury enumue matrix Satified 145 owen characteric
equation.

$$h^{3} - 5h^{2} + 5h + 11 = 0$$

$$h^{3} - 5h^{2} + 5h + 11 = 0$$

$$h^{3} - 6h^{2} + 5h + 11 = 0$$

$$h^{3} - 6h^{2} + 5h + 11 = 0$$

$$h^{2} = \begin{bmatrix} 1 + 142 & 1 + 2 - 1 & 1 - 3 + 5 \\ 1 + 2 - 5 & 1 + 3 + 3 & 1 - 5 - 9 \\ 2 - 13 \end{bmatrix} \begin{bmatrix} 2 - 13 \\ 2 & -13 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + 142 & 1 + 2 - 1 & 1 - 3 + 5 \\ 1 + 2 - 5 & 1 + 3 + 3 & 1 - 5 - 9 \\ 2 - 1 + 5 & 2 - 2 - 3 & 2 + 3 + 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + 2 & 1 & 9 \\ -1 & 3 & 1 + 1 \\ -3 & 8 - 14 \\ -3 & 8 - 14 \\ -3 & 8 - 14 \\ -3 & 8 - 14 \\ -3 & 8 - 14 \\ -3 & 8 - 16 \\ -3 & 8 -$$

$$-A^{2} - \begin{bmatrix} -4i & -2 & -1 \\ 3 & -3 & 14 \\ -7 & 3 & -14 \end{bmatrix}$$

$$= 6A - 6 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & -1 & 3 \end{bmatrix} = 2 \begin{bmatrix} 6 & 6 & 6 \\ 6 & 12 & -18 \\ 1 & -6 & 18 \end{bmatrix}$$

$$31:6 \\ 52:c \\ 51 = 5 \\ 52:c \\ 51 = 5 \\ 52:c \\ 53 = 6 \\ 53 = 11 \\ 53 = 6 \\ 53 = 11 \\ 53 = 6 \\ 53 = 11 \\ 53 = 6 \\ 53 = 5 \\ 53 = 6 \\ 53 = 5 \\ 53 = 6 \\ 53 = 5 \\ 53 = 6 \\ 53 = 11 \\ 53 = 6 \\ 53 = 5 \\ 53 = 6 \\ 53 = 11 \\ 53 = 6 \\ 53 = 5 \\ 53 = 6 \\ 53 = 11 \\ 53 = 6 \\ 53 = 5 \\ 53 = 6 \\ 53 = 11 \\ 53 = 6 \\ 53 = 5 \\ 53 = 6 \\ 53 = 11 \\ 53 = 11 \\$$

Assignment Answer Sheet

Name of the Student : R. Sriharishma

AU Register Number: 732421, 104,098

Assignment – 02			Date of Issue:	18.11.2024	Marks	10
Course code	MA3151	Course Title	MATRICES AND CALCULUS			
Year		Semester/Section	1 / B	Date of Submission:	02.1	2.24

Q.No	Questions	CO
1	If $u = \frac{tan^{-1}(\frac{x^2+y^2}{x-y})}{then prove that} x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial x=\sin 2u}$.	C03
2	Find $\int (\log x)^8 dx$ by using integral by parts.	C04

Mark Allocation

Rubrics	Marks Allocated	Marks obtained
Content Quality	6	6
Presentation Quality	2	2
Timely submission	2	2
Total marks	10	

Joranan Kam.

1

Name and Signature by the Faculty Incharge

HoD/S&H

Find
$$\int (\log x)^3 dx \ by$$
 wing stegnal by pasts.
Soln.
Let, $u = (\log x)^3$.
 $\frac{du}{dx} = 3(\log x)^2$.
 $\frac{du}{dx} = 3(\log x)^2$.
 $\int dx = 3(\log x)^2$.
 $\int dx = 3(\log x)^2$.
 $\int udv = \log x$.
 $\int udv = \log x - \int x - \frac{3(\log x)^2}{2} dx$.
 $\int udv = uv - \int v du$.
 $\int (\log x)^3 dx = (\log x)^3 - 3 \int (\log x)^2 dx - 10$.
(To Find $\int (\log x)^3 dx$.
 $u = (\log x)^2 - 3 \int (\log x)^2 dx - 10$.
(To Find $\int (\log x)^3 dx$.
 $dx = 2\log x (\frac{1}{2})^{\sqrt{2} - 2}$.
 $dx = 2\log x (\frac{1}{2})^{\sqrt{2} - 2}$.
 $dx = (\log x)^2 - 2 \int \log x dx - 10$.
(To Find $\int \log x$.
 $\int (\log x)^3 dx = (\log x)^2 (x) - \int x (\frac{2\log x}{2}) dx$.
 $= x (\log x)^2 - 2 \int \log x dx - 10$.
(To Find $\int \log x$.
 $\int dx = \log x \int dv = \int dx$.
 $\int dx = \log x \int dv = \int dx$.
 $\int dx = \log x \int dv = \int dx$.
 $\int dx = \log x \int dv = \int dx$.
 $\int dx = \log x \int dv = \int dx$.
 $\int dx = \log x \int dv = \int dx$.
 $\int dx = \log x \int dv = \int dx$.
 $\int du = dx/x$.

others

$$\int \log x \, dx = (\log x)(x) - \int x \frac{dx}{2x}$$

$$= 2x \log x - \int dx$$

$$= x \log 2x - 2x + (2 - \pi)^{3}$$
equation (3)

$$\int (\log x)^{2} \, dx = x(\log x)^{2} - 2[x \log x - x] + c$$

$$\int (\log x)^{2} \, dx = x(\log x)^{2} - 2x \log x + 2x + (2 - \pi)^{3}$$
equation (4)

$$\int (\log x)^{3} \, dx = 2x (\log x)^{3} - 3 \int (\log x)^{3} \, dx$$

$$= 2x (\log x)^{3} - 3 \int (\log x)^{2} - 2x \log x + 2x + c - \pi)^{3}$$

$$\int (\log x)^{3} \, dx = 2x (\log x)^{3} - 3 \int (\log x)^{3} \, dx$$

$$= 2x (\log x)^{3} - 3x (\log x)^{2} - 2x \log x + c - 2x + c -$$

$$\int \frac{3x^{4} + 3x^{2} - 5x^{2} + x - 1}{x^{2} + x - 1} dx = \int (9x^{3} + 1) dx + \int \frac{1}{x^{2} + x - 2} dx$$

$$= 3 \int x^{2} dx + \int dx + \int \frac{1}{x^{2} + x - 2} dx$$

$$= 3 \int x^{2} dx + \int \frac{1}{x^{2} + x - 2} dx - 7 (1)$$
To Find, $\int \frac{1}{x^{2} + x - 2} dx$,

$$Hexe, \quad x^{2} + x - 1$$

$$= x^{2} + x + \frac{1}{4} - \frac{\alpha}{n}$$

$$= (x + \frac{1}{2})^{2} - (\frac{3}{2})^{2}$$

$$\int \frac{1}{x^{2} - \alpha^{2}} dx = \int \frac{1}{(x + \frac{1}{2})^{2} - (\frac{3}{2})^{2}} dx$$

$$\int \frac{1}{x^{2} - \alpha^{2}} dx = \frac{1}{2(\frac{3}{2})} \log \left| \frac{x - \alpha}{x + \alpha} \right| + c$$

$$= \frac{1}{2(\frac{3}{2})} \log \left| \frac{x + \frac{1}{2} - \frac{3}{2}}{x + \frac{1}{2}} \right| + c$$

$$= \frac{1}{3} \log \left| \frac{x - 1}{x + \frac{1}{2}} \right| + c - 7 (2)$$
Gub (2) S eq (3)

$$\int \frac{3x^{4} + 3x^{3} - 5x^{2} + x - 1}{x^{2} + x - 2} dx = x^{3} + x + \frac{1}{3} \log \left| \frac{x - 1}{x + 4} \right| + c$$

$$(\alpha + b)^{3} = \alpha^{2} + 2\alpha b + b^{3}$$

$$(x + \frac{1}{2})^{3} = x^{4} + 2x(\frac{1}{2}) + \frac{1}{2} = 7 x^{2} + 3x^{4} \frac{1}{2} = x^{2} \left(\frac{\alpha - x}{2} \right)$$

$$\begin{aligned} \begin{array}{l} \begin{array}{l} 2ab = x\\ 2xb = x\\ 2b = 1\\ b = \frac{1}{x}, \end{aligned} \\ \begin{array}{l} U = sin^{-1} \left[\frac{x^{3} + y^{3}}{x + y} \right] \text{ prove } \left\{ kat \propto \frac{3v}{3x} + y \frac{3v}{3y} = sin gu, \end{aligned} \\ \begin{array}{l} \begin{array}{l} u = sin^{-1} \left[\frac{x^{3} + y^{3}}{x - y} \right] \\ \text{ison } u = tan^{-1} \left[\frac{x^{3} + y^{3}}{x - y} \right] \\ \text{ison } u = tan^{-1} \left[\frac{x^{3} + y^{3}}{x - y} \right] \\ \begin{array}{l} \begin{array}{l} 1at \\ x + tan u = z \end{array} \\ \end{array} \\ \begin{array}{l} z = \left(\frac{x^{3}}{x - y} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{x^{2} \left(1 + \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{2} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{2} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{2} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{2} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{2} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{2} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{2} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{2} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{2} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{2} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{2} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{2} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{2} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{3} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{3} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{3} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{3} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{3} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{3} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{3} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{3} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{3} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{3} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{3} \left(1 - \frac{y^{3}}{x^{3}} \right) \\ \hline z = \frac{y^{$$

$$\frac{\partial z}{\partial y} = \operatorname{Soc}^{2} u \frac{\partial v}{\partial y}$$

$$\frac{\partial z}{\partial y} = \operatorname{Soc}^{2} u \frac{\partial v}{\partial y} - \tau (5)$$

$$\frac{\partial z}{\partial y} = \operatorname{Soc}^{2} u \frac{\partial v}{\partial y} - \tau (5)$$

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \operatorname{Soc}^{2} u \left(x \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$$
From Equation,
$$\frac{2 \operatorname{Hon} u}{\operatorname{Soc}^{2} u} = x \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}$$

$$\frac{2 \times \operatorname{SiR} u}{\operatorname{Cos} u} \times \operatorname{Cos}^{2} u = x \frac{\partial u}{\partial x} + \frac{1}{2} \frac{\partial v}{\partial y}$$

$$2 \operatorname{SiR} u \operatorname{Cos} u = x \frac{\partial v}{\partial x} + \frac{1}{2} \frac{\partial v}{\partial y}$$

$$x \frac{\partial v}{\partial x} + \frac{1}{2} \frac{\partial v}{\partial y} = \operatorname{SiR} u$$

$$2 \operatorname{SiR} v \operatorname{Cos} u = x \frac{\partial v}{\partial x} + \frac{1}{2} \frac{\partial v}{\partial y}$$

$$x \frac{\partial v}{\partial x} + \frac{1}{2} \frac{\partial v}{\partial y} = \operatorname{SiR} u$$

SASURIE COLLEGE OF ENGINEERING

UNIT-1 MATRICES

PART - A

- 1. State Cayley- Hamilton theorem.
- 2. Find the sum and product of the Eigenvalues of the matrix $A = \begin{pmatrix} 3 & 0 & 0 \\ 8 & 4 & 2 \\ 6 & 2 & 5 \end{pmatrix}$ 3. Find the sum and product of the Eigenvalues of the matrix $A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$ (4) The Eigen value of a matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ are 3 and 0, what is the third Eigen value? And find the product of the Eigen value? 5. Find the sum and product of all the Eigenvalues of $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$. If 2 and 3 are the two eigenvalues of $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 2 \\ b & 0 & 2 \end{pmatrix}$ then find the value of b. 7. The product of two Eigenvalues of the $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$ is 16 find the unit Eigenvalue. Find the Eigenvalues of the matrix $\begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 2 & -1 \end{pmatrix}$. Find the Eigenvalues of 3A+2I, where $A = \begin{pmatrix} 5 & 4 \\ 0 & 2 \end{pmatrix}$. (10) If λ is an Eigen value of a matrix A, then λ^{-1} is the Eigen value of A^{-1} . 11. If λ is an Eigen value of a matrix A, then λ^2 is the Eigen value of A^2 . (12) Prove that the Eigen value of a orthogonal matrix are of unit modulus. 13. If the Eigen value of the matrix 3x3 are 2,3,1 then find the Eigen value of adjoint of A. 14. If 2,-1,-3 are the Eigen value of the matrix A, then find the Eigen value of $A^2 - 2I$. 15. If the sum of two Eigen values and trace of a 3x3 matrix A are equal, find the value of |A|.

16. Prove that $x^2 + 2y^2 + 3z^2 + 2xy + 2yz - 2zx = 0$ is indefinite.

17. Give the nature of a quadratic from whose matrix is $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$.

18. What is the nature of the quadratic form $x^2 + y^2 + z^2$ in four variables?

19. Discuss the nature of the quadratic form $2x^2 + 3y^2 + 2z^2 + 2xy$.

(20. Write down the matrix corresponding to the quadratic form $2x_1^2 + 5x_2^2 + 4x_1x_2 + 2x_3x_1$.

TUANT

PART-B

CHAPTER-1.1 (8-MARKS)

1. Find the Eigen values and Eigen vectors for the matrix	$\begin{bmatrix} 6 & -2 \\ -2 & 3 \\ 2 & -1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$
2. Find the Eigen values and Eigen vectors for the matrix	$\begin{bmatrix} 2 & 0 & - \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$	1]
3. Find the Eigen values and Eigen vectors for the matrix	$\begin{bmatrix} 7 & -2 \\ -2 & 6 \\ 0 & -2 \end{bmatrix}$	0 -2 5
4. Find the Eigen values and Eigen vectors for the matrix	$\begin{vmatrix} -2 & 2 \\ 2 & 1 \\ -1 & -2 \end{vmatrix}$	3 -6
5. Find the Eigen values and Eigen vectors for the matrix	$\begin{bmatrix} -2 & 2 \\ 2 & 1 \\ -1 & -2 \end{bmatrix}$	$\begin{bmatrix} -3 \\ -6 \\ 0 \end{bmatrix}$
6. Find the Eigen values and Eigen vectors for the matrix	$\begin{bmatrix} 8 & -6 \\ -6 & 7 \\ 2 & -4 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -4 \\ 3 \end{bmatrix}$
7. Find the Eigen values and Eigen vectors for the matrix		
8. Find the Eigen values and Eigen vectors for the matrix	$\begin{bmatrix} -2 & 2 \\ 2 & 1 \\ -1 & -2 \end{bmatrix}$	$\begin{bmatrix} -3 \\ -6 \\ 0 \end{bmatrix}$

CHAPTER-1.2 (8-MARKS)

Verify the Cayley-Hamilton theorem and also find A^{-1} for the matrix $\begin{bmatrix} 5 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & 1 & 2 \end{bmatrix}$ 2. Verify the Cayley-Hamilton theorem and also find A^{-1} for the matrix $\begin{bmatrix} 1 & 2 & -1 \\ 3 & -3 & 1 \\ 2 & 1 & -2 \end{bmatrix}$ 3. Verify the Cayley-Hamilton theorem and also find A^{-1} for the matrix $\begin{bmatrix} -3 & 2 & 1 \\ 3 & -1 & -2 \\ 1 & 2 & 3 \end{bmatrix}$ 4. Verify the Cayley-Hamilton theorem and also find A^{-1} for the matrix $\begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$ 5. Verify the Cayley-Hamilton theorem and also find A^{-1} for the matrix $\begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 1 \\ 1 & 0 & -2 \end{bmatrix}$ **6.** Verify the Cayley-Hamilton theorem and also find A^4 for the matrix $\begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}$ 7. Use Cayley-Hamilton theorem to find the value of $A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} + 8A^{2} - 2A + I$ Where $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ Verify the Cayley-Hamilton theorem and also find A^4 for the matrix $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$ **CHAPTER-1.3** (16-MARKS)

- 1. Reduce the quadratic form into the canonical by using orthogonal transform $6x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 - 2x_2x_3 + 4x_3x_1$ and also find Rank, signature, Index
- 2. Reduce the quadratic form into the canonical by using orthogonal transform $x^2 + 5y^2 + z^2 + 2xy + 2yz + 6zx$ and also find Rank, signature, Index

Reduce the quadratic form into the canonical by using orthogonal transform $8x_1^2 + 7x_2^2 + 3x_3^2 - 12x_1x_2 - 8x_2x_3 + 4x_3x_1$ and also discuss the nature

- Reduce the quadratic form into the canonical by using orthogonal transform $3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_1x_2 2x_2x_3 + 2x_3x_1$ and also discuss the nature
- 5. Reduce the quadratic form into the canonical by using orthogonal transform $3x_1^2 + 5x_2^2 + 3x_3^2 - 2x_2x_3 + 2x_3x_1 - 2x_1x_2$ and also find Rank, signature, Index
- 6. Reduce the quadratic form into the canonical by using orthogonal transform $3x^2 3y^2 5z^2 2xy 6yz 6xz$, and also discuss the nature
- 7. Reduce the quadratic form into the canonical by using orthogonal transform $x^2 + y^2 + z^2 2xy 2yz 2zx$, and also find Rank, signature, Index
- 8. Reduce the quadratic form into the canonical by using cathogonal transform $x_1^2 + 2x_2^2 + x_3^2 12x_1x_2 + 2x_2x_3$ and also find Rank, signature, Index
 - Reduce the quadratic form into the canonical by using orthogonal transform. $2x^2 + y^2 + z^2 + 2xy - 2xz - 4yz$ and also find Rank, signature, Index

UNIT-2 DIFFERENTIAL CALCULUS

PART - A

- 1. Find the domain and range f(x) = 3x-2.
- 2. Sketch the graph of the absolute value function f(x) = |x|
- 3. Prove that $\lim_{x \to 0} |x| = 0$.
 - 4. If $\mathbf{x}^2 + \mathbf{y}^2 = 25$, then find $\frac{dy}{dx}$.
 - 5. Find the derivative $y = (x^3-1)^{100}$.
 - 6 Find the domain and range $y = x^2$.

7. Sketch the graph of function
$$|x| = \begin{cases} x, & if x > 0 \\ -x, & if x < 0 \end{cases}$$

- 8. Find the $\lim_{x \to 3^+} \left(\frac{2x}{x-3}\right)$. 9. Prove that $\lim_{x \to 0} \left(\frac{|x|}{x}\right) 2.55$ 10. Define derivative of a function f(x).
 - 11. Evaluate $\lim_{x \to 1} \left(\frac{x^4 1}{x^3 1} \right)$, if it exists.

12. Find the derivative of the function $f(x) = \sqrt[3]{1 + tanx}$.

13. Sketch the graph of the function $\begin{cases} 1+x, x < -1 \\ x^2, -1 \le x \le 1 \\ 2-x, x \ge 1 \end{cases}$ and use it to determine the value of "a" for which -2

 $\lim_{x \to \infty} f(x) \text{ exists? (Jan-18)}$

14. Does the curve $y = x^4 - 2x^2 + 2$ have any horizontal tangents? If so where? (Jan-18)

15. State Rolle's Theorem and verify the Rolle's theorem for $f(x) = x^3 + 5x^2 - 6x$ on the interv 1(0, 1). 16. State Mean value theorem

17. Find the critical numbers for $f'(x) = \frac{x^2(x-1)}{x+2}, x \neq -2$

18. Define concavity and point of inflection.

19. Define maxima and minima of one variable and write the conditions.

* 20. Find the tangent line and normal line to the given curve $y = 2xe^x$ at (0, 0).

21. Find the domain of $f(x) = \sqrt{3-x} - \sqrt{2+x}$ (Nov 2018) 22. Evaluate $\lim_{t \to 1} \frac{t^4 - 1}{t^3 - 1}$ (Nov 2018) 23. check whether $\lim_{t \to 1} \frac{3x + 9}{|x + 3|}$ exist. (APR 19) * 24. Find the critical points of $y = 5x^3 - 6x$ (APR 19)

PART – B

Limits

1. Find the value of $\lim_{x \to 0} \frac{\sin x}{x}$

2. Find the domain of the functions a) $y = x^2$, b) $f(x) = \sqrt{x-2}$, c) $g(x) = \frac{1}{x^2-x}$

3. Find $\lim_{x \to 0} \left(\frac{1}{r^2} \right)$. 4 Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{1 + \cos 2x}{(\pi - 2x)^2} =$

5. Find the limit of the function $\lim_{x\to 0} \frac{e^{5x}-1}{x}$, given numbers $x = \pm 0.5$, ± 0.1 , ± 0.01 , ± 0.001 , + 0.001 (correct 6 decimal places) (Nov 2018)

Continuity

- 1. Show that the function $f(x) = 1 \sqrt{1 x^2}$ is continuous on the interval [-1, 1].
- 2. Find an equation of the tangent line to the parabola $y = x^2$ at the point (1,1).
- 3. Find an equation of the tangent line to the hyperbola $y = \frac{3}{x}$ at the point (2,1).

 \neq 4. If $(x) = \sqrt{x}$, find the equation for f'(x).

5. Determine whether f'(0) exist or not for the given function

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

6. Where is the function f(x) = |x| is differentiable?

7. Find
$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2}$$

8. Find the value of
$$\lim_{x \to 1} \left(\frac{x-1}{x^2-1} \right)$$

9. For what value of the constant "c" is the function "f" continuous on $(-\infty,\infty)$,

$$f(x) = \begin{cases} cx^2 + 2x, x < 2\\ x^3 - cx, x \ge 2 \end{cases}$$

10. For what value of the constant "b" is the function "f" continuous on $(-\infty,\infty)$,

if
$$f(x) = \begin{cases} bx^2 - 2x & if \ x < 2\\ x^3 - bx & if \ x \ge 2 \end{cases}$$
 (Apr 19)

Differentiability

- 1. If the function f(x) is differentiable at a, then f(x) is continuous at a.
- 2. Find an equation of the tangent line to the hyperbola $y = \frac{3}{x}$ at the point (3,1).
- 3. Find an equation of the tangent line to the parabola $y = x^2 8x + 9$ at the point (3,-6).
- 4. Where is the function f(x) = |x| is differentiable?

5. Show that
$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

- 6. Show that the sum of x and x intercepts of any tangent line to the curve $\sqrt{x} + \sqrt{y} = \sqrt{c}$ is equal to c.
- 7. Verify that the function $f(x) = 5-12x+3x^2$ satisfies the Rolle's theorem on the interval [1.3].
- 8. Find the local maximum and local minimum values of the function $g(x)=x+2\sin x$.

9. Find the absolute maximum and minimum values of the function

- $f(x) = x^3 - 3x^2 + 1$, $\frac{-1}{2} \le x \le 4$. 10. Find the local maximum and local minimum values of the function $f(x) = 2x^3 + 3x^2 - 36x$.

* 11. Find the values of a and b such that the function $f(x) = \begin{cases} x+2, x < 2 \\ ax^2 - bx + 3, 2 \le x < 3 \\ 2x - a + b, x \ge 3 \end{cases}$

is continuous everywhere.

12. Find the derivative of the function $f(x) = \frac{1}{\sqrt{x}}$ using the definition of derivative. 0

* 13. Find the values of a and b such that the function $f(x) = \begin{cases} \frac{x^2 - b}{x-2}, & x < 2\\ ax^2 - bx + 3, & 2 \le x \le 3\\ 2x - a + b, & x > 3 \end{cases}$

(Nov 2018)

14. find the derivative of $f(x) = \cos^{-1} \left[\frac{b + a \cos x}{a + b \cos x} \right]$ (Nov 2018) 15. find y' for $\cos(xy) = 1 + \sin y$ (Nov 2018)

16. Find
$$\frac{dy}{dx}$$
 if $y = x^2 e^{2x} (x^2 + 1)^4$ (Apr 19)

Maxima and minima

1. Find the maximum and minimum values of $f(x) = \frac{x^2 + x + 1}{x^2 - x + 1}$.

2. Find the local maximum and minimum values of $f(x) = \sqrt{x} - \sqrt[4]{x}$ using both the first and second \overline{V}_{i} (Jan-18) derivative tests. (Jan-18)

3. Find y^{**} if $x^{*} + y^{*} = G$

 \mathcal{V}

2

* 4 Find the tangent line to the equation $x^3 + y^3 = 6xy$ at the point (3, 3) and at what point the tangent line (Jan-18) horizontal in the first quadrant

For the function $f(x) = 2 + 2x^2 - x^4$ find the intervals of increase or decrease, local maximum and minimum values, concavity and inflection points (Nov 2018) 6/For the function $f(x) = 2x^3 + 3x^2 - 36x$ find the intervals of increase or decrease, local maximum and minimum values. (Apr 19)

19. If
$$\mathbf{x} = \mathbf{u}^2 - \mathbf{v}^2$$
, $\mathbf{y} = 2\mathbf{u}\mathbf{v}$ evaluate the Jacobian of \mathbf{x} , \mathbf{y} with respect to \mathbf{u} , \mathbf{v} (Apr19)
20. If $\mathbf{x}^2 + \mathbf{y}^2 = 1$, then find $\frac{dy}{dx}$.
21. Find $\frac{dy}{dx}$ if $\mathbf{x}^y + \mathbf{y}^y = c$, where \mathbf{c} is a constant (Nov18)
22. State the properties of jacobians (Nov18)
23. Find $\frac{du}{dt}$ in trems of t, if $\mathbf{x}^3 + \mathbf{y}^3 = \mathbf{u}$ where $\mathbf{x} = \mathbf{at}^2$, $\mathbf{y} = 2\mathbf{at}$ (Apr19)

Implicit functions 1. If $u = \sin^{-1}\left(\frac{x^3 - y^3}{x + y}\right)$ then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2t$ anu. 2. If $g = \Psi(u, v)$ where $u = x^2 - y^2$ and v = 2xy, show that $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = 4(x^2 + y^2) \left[\frac{\partial^2 \Psi}{\partial u^2} + \frac{\partial^2 \Psi}{\partial v^2}\right]$ 3. If u = f(x - y, y - z, z - x) then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. 4. If $\emptyset = \emptyset(u, v)$ where $u = e^x \cos y$, $v = e^x \sin y$ Show that $\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = (u^2 + v^2) \left[\frac{\partial^2 \varphi}{\partial u^2} + \frac{\partial^2 \varphi}{\partial v^2}\right]$. 5. If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$ then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = sin2u$. 6. If $u = x^2 \tan^{-1} \frac{y}{x} - y^2 \tan^{-1} \frac{x}{y}$, then find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$, using Euler's theorem. 7. If z = f(x,y), where $x = e^u \cos v$ and $v = e^u \sin v$ then show that $x\frac{\partial x}{\partial v} + y\frac{\partial z}{\partial u} = e^{2u} \frac{\partial z}{\partial y}$. 8. If $u = (x^2 + y^2 + z^2)^{-1/2}$ then find the value of $u_{xx} + u_{yy} + u_{zz}$. (Jan-18) 9. if $u = f\left(\frac{y-x}{xy}, \frac{x-x}{xz}\right)$ find $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial x}$. (Nov-18) 10. If u = f(2x - 3y, 3y - 4z, 4z - 2x) then find $\frac{1}{2\partial x} + \frac{1}{3}\frac{\partial u}{\partial y} + \frac{1}{4}\frac{\partial u}{\partial z}$ (Apr19)

Maxima and minima

11. Find the Maximum and Minimum of $f(x, y) = x^2 - xy + y^2 - 2x + y$. (12) Find the Maximum and Minimum of $f(x, y) = x^3 + y^3 - 3x - 12y + 20$. (13) Find the Maximum and Minimum of $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (Nov-18) (14) Examine $f(x, y) = x^3 - 15y^2 - 15x^2 + 3xy^2 + 72x$ for extreme values. (Apr19) 3 8b.

Jacobian

15. If
$$y_1 = \frac{x_2 x_3}{x_1}$$
, $y_2 = \frac{x_3 x_1}{x_2}$, $y_3 = \frac{x_1 x_2}{x_3}$ then find $\frac{\partial(y_1, y_2, y_3)}{\partial(x_1, x_2, x_3)}$.
16. If $x + y + z = u, y + z = uv, z = uvw$, prove that $\frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2 v$

17. Find the maximum and minimum values of $f(x, y) = 3x^2 - y^2 + x^3$. (Jan-18)

Lagrange's multiplier method

- 18. A rectangular box open at the top is to have a volume of 32cc. Find the dimensions of the box requiring, the least material for the construction.
- 19. The temperature at any point (x, y, z) in space is $T = 400xyz^2$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.
- 20. Find the shortest and the longest distances from the point (1,2,-1) to the spher $x^2 + y^2 + z^2 = 24$. (Apr19)
- 21. Find the dimensions of the rectangular box without a top of maximum capacity, whose surface area is 108 sq. cm. (Jan-18)
- 22. Find the volume of the greatest rectangular parallelepiped that can be Inscribed in the ellipsoid

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, using Lagrange's method.

23. Find the shortest distances from the point (1, 2, 0) to the cone $x^2 + y^2 = z^2$. (Nov-18)

Taylor's series method

24. Expand $f(x, y) = e^x \cos y$ at $\left(0, \frac{\pi}{2}\right)$ up to 3rd term using Taylor's series 3. $\sqrt{2}$

25. Obtain the Taylor's series expansion of $x^3 + y^3 + xy^2$ in terms of power of (x-1) and (y-2) upto third degree terms. 3.72 (Jan-18)

26. Find the taylor's series of function $f(x) = \sqrt{1 + x + y^2}$ in powers (x - 1) and y upto second degree terms. (Nov-18)

27. Expand Taylor's series expansion of $x^2y^2 + 2x^2y + 3xy^2$ in terms of power of (x + 2) and (y - 1) upto third degree terms. (Apr19)

MATTHS CHAP-4

PART-A

- 1. Evaluate $\int \theta \cos\theta \, d\theta$ using integration by parts. By (igil) 210
- 2. Find the value of $\int_{0}^{\frac{\pi}{2}} \sin^{8} x \, dx \, \int_{2\pi\pi^{4}} a_{1}\left(\frac{\pi}{2}\right)$ 3. Find the value of $\int_{0}^{\frac{\pi}{2}} \sin^{6} x \, dx$ $D(x) \, dx \, (2\pi)^{2} (1 - 2\pi)^{2} (1 - 2\pi)^{2} (1 - 2\pi)^{2} (1 - 2\pi)^{2}$ 4. Evaluate $\int \frac{\cos\theta}{\sin^{3}\theta} \, d\theta$ by the method of substitution. $\int_{0}^{\pi} dx = \frac{\pi}{2} \int_{-\frac{\pi}{4}}^{\pi} (x^{3} + x^{4} \tan x) \, dx \, 4 \cdot \frac{6}{4} \int_{0}^{\pi} f(x) \, dx = \frac{1}{2} \int_{0}^{\pi} f(x) \, dx \, pq$ 5. Evaluate $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (x^{3} + x^{4} \tan x) \, dx \, 4 \cdot \frac{6}{4} \int_{0}^{\pi} f(x) \, dx = 12$ then find $\int_{0}^{10} f(x) \, dx \, pq$ to 6. Given that $\int_{0}^{10} f(x) \, dx = 17$ and $\int_{0}^{8} f(x) \, dx = 12$ then find $\int_{0}^{10} f(x) \, dx \, pq$ to 7. If f is continuous and $\int_{0}^{4} f(x) \, dx = 10$ find $\int_{0}^{2} f(2x) \, dx \, e^{\pi t}$ 8. Prove that $\int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \, dx$ 9. Evaluate $\int \frac{\tan x}{\sec x + \tan x} \, dx$ 10. Determine whether the integral which is Convergent or Divergent (a) $\int_{0}^{\infty} \frac{dx}{x^{2} + 4} \, (c) \int_{0}^{\infty} e^{x} \, dx \, (d) \int_{4}^{\infty} \frac{1}{\sqrt{x}} \, dx \, (e) \int_{3}^{\infty} \frac{dx}{\sqrt{x^{2} - x - 3}} \, = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{dx}{e^{x + x^{2}}} \, \int_{0}^{1} \int_{0}^{1} \frac{dx}{e^{x + x^{2}}} \, \int_{0}^{1} \int_{0}^{1} \frac{dx}{e^{x + x^{2}}} \, \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{dx}{e^{x + x^{2}}} \, \int_{0}^{1} \int_{0}^{1} \frac{dx}{e^{x + x^{2}}} \, \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{dx}{e^{x + x^{2}}} \, \int_{0}^{1} \int_{0}^{1} \frac{dx}{e^{x + x^{2}}} \, \int_{0}^{1} \int_{0}^{1} \frac{dx}{e^{x + x^{2}}} \, \int_{0}^{1} \frac{dx}{e^{x + x^{2}}} \,$
- Evaluate ∫(log x)³ dx by using integration by parts. Note
 Evaluate ∫ x²e^x dx by using integration by parts. J(12) detection
 Using by integration by parts ∫ (log x)²/x² dx d det (Eq. 11)
 Evaluate ∫₀^{π/2} log sin x dx and hence find the value of ∫₀¹ sin⁻¹x/x dx
 Prove that ∫₀^{π/4} log(1 + tanx) dx = π/8 log 2
 Establish a reduction formula for I_n = ∫ sinⁿ x dx. Hence find ∫₀^{π/2} sinⁿ x dx

7. Establish a reduction formula for $I_n = \int \cos^n x \, dx$ Hence find $\int_0^{\frac{n}{2}} \cos^n x \, dx$ 8. Evaluate $\int_0^{\infty} e^{-\alpha x} \sinh x \, dx \ (\alpha > 0)$ using integration by parts. $\frac{1}{1+\alpha + x^2}$ is a set of $\frac{1}{2}$ or $\frac{1}{2$

 $\frac{d}{dx} \sin x = \cos x \qquad \int \cos x \, dx = \sin x + c$ $\frac{d}{dx} \cos x = -\sin x \qquad \int \sin x \, dx = -\cos x + c$

UNIT 5

PART-A

1. Evaluate $\int_0^1 \int_0^x dx \, dy$. 2. Evaluate $\int_{1}^{2} \int_{1}^{2} xy^{2} dx dy$. 3. Evaluate $\int_{1}^{2} \int_{2}^{5} xy \, dx \, dy$. 4. Find the value of $\int_0^\infty \int_0^y \frac{e^{-y}}{y} dx dy$. 5. Find the value of $\int_0^2 \int_0^{x^2} e^{y/x} dx dy$. 6. (a) Find the value of $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dx dy$ (b) Find the value of $\int_0^1 \int_1^2 x(x + y) dx dy$. 7. Find the value of $\int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^2 dr d\theta$. 8. Find the value of $\int_1^a \int_1^b \frac{1}{xy} dx dy$. 9 Charge of order of integration (a) $\int_0^2 \int_0^x f(x,y) dx dy$. (b) $\int_0^1 \int_1^{\sqrt{4-y}} f(x,y) dx dy$. 10. Sketch the region of integration in $\int_0^1 \int_x^1 f(x, y) dx dy$. A1. Draw the rough sketch for the region of integration $\iint f(x, y) dx dy$, where the region is the triangle in xy-plane bounded by x- axis y=x and the line $x = \pi/2$.

12. For the limit of f the integration ∬_R f(x, y)dx dy, where R is the region bounded by the lines x = 0, y = 0 and x+y = 2.
13. Evaluate ∫₀¹ ∫₀² ∫₀³ (xy² z) dx dy. dx
14. Describe the solid region whose volume is given by the following triple integral ∫_{x=-1}¹ ∫_{y=-√1-x²} ∫_{z=0}¹ dz dy dx. (do not evaluate the integral).
15. Transfer the double integral ∫₀² ∫₀² xdxdy/(x² z) f_y² xdxdy/(x² z) into polar coordinates.

PART – B

Change of order of integration for the given integrals and also evaluate it

 a) ∫₀^a ∫₀^{2√ax} x² ux dy
 b) ∫₀^{4a} ∫_{x²/4a}^{2√2a^x} xy dx dy
 c) ∫₀^a ∫_x^a (x² + y²) dx dy.

 Find the area between the curves y² = 4x and x² = 4y. (OR) Change of order of integration on ∫₀^{4a} ∫_{x²/4a}^{2√ax} dx dy and hence evaluate.

 \mathcal{A}) Change the order of integration in

- (a) $\int_0^{\infty} \int_0^{y} ye \frac{dx \, dy}{dx \, dy}$. (a) Change of order of integration for the given integrals $\int_0^{a} \int_{t^2/a}^{2a-x} xy \, dx \, dy$ and also evaluate it.
- 5) By changing polar coordinates, evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$.
- 6) Evaluate (a) $\int_0^2 \int_0^{\sqrt{2x-x^2}} (x^2 + y^2) dx dy$. (b) $\int_0^a \int_0^{\sqrt{a^2-x^2}} (x^2 + y^2) dx dy$ by changing into polar coordinates.

- 7) Evaluate by c? anging into polar coordinates $\int_0^a \int_y^a \frac{x}{x^2 + y^2} dx dy$.
- 8) Using a double integral, the area of the cardioid $r = a (1 + \cos\theta)$.
- 9) Find by double integral the area between the parabola $y^2 = 4\alpha x$ and the line y = x. 5.82
- Find the area of the region R enclosed by the parabola $y = x^2$ and the line y = x + 2
- 11) Evaluate $\iint (x^2y + y^2x) dx dy$ over the area between $y = x^2$ and y = x.
- 12) Evaluate $\int_0^1 \int_0^x \int_0^{\sqrt{x+y}} (z) dz dy dx$.
- 13) Find the value of $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \frac{dz \, dy \, dx}{\sqrt{1-x^2-y^2-z^2}}$. (OR)
 - Find the value of $\int_0^a \int_0^{\sqrt{a^2 x^2}} \int_0^{\sqrt{a^2 x^2 y^2}} \frac{dz \, dy \, dx}{\sqrt{a^2 x^2 y^2 z^2}}$. (OR)
 - Evaluate $\iiint \frac{dz \, dy \, dx}{\sqrt{a^2 x^2 y^2 z^2}}$ over the first octant of the sphere $x^2 + y^2 + z^2 = a^2$

4) Evaluate
$$\int_0^{2a} \int_0^x \int_y^x (xyz) dz \, dy \, dx$$
.

Find the volume of the sphere of radius 'a'. (OR) Find the volume of sphere $x^2 + y^2 + z^2 = a^2$ using triple integral. (OR) Find the volume of sphere (a) $x^2 + y^2 + z^2 = 9$ (b) $x^2 + y^2 + z^2 = 16$ (c) $x^2 + y^2 + z^2 = 25$

Reg. No. : E N G G T С OM R EE

Question Paper Code : 30234

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

First Semester

MA 3151 - MATRICES AND CALCULUS

(Common to : All Branches (Except Marine Engineering))

(Regulations 2021)

Time : Three hours

Maximum: 100 marks

For More Visit our Website

EnggTree.com

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

If two eigen values of the matrix $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$ are equal to 1 each, find the 1. www.EnggTree.com

eigen value of A^{-1} .

Write the uses of Cayley-Hamilton Theorem. 2.

If $y = x \log\left(\frac{x-1}{x+1}\right)$, then find $\frac{dy}{dx}$. 3.

Find the point of inflection of $f(x) = x^3 - 9x^2 + 7x - 6$. 4.

Write Euler's theorem on homogeneous functions. Б.

- If $x = r\cos\theta$, $y = r\sin\theta$, find $\frac{\partial(x, y)}{\partial(r, \theta)}$. 6.
- Evaluate $\int \theta \cos \theta d\theta$ using integration by parts. 7.
- Find the value of $\int_{0}^{\pi/2} \sin^{6} x dx$. 8.
- Evaluate $\iint_{x} dy dx$. 9.

Transform the double integral $\int_{0}^{2} \int_{0}^{2} \frac{x dx dy}{x^2 + y^2}$ into polar coordinates. 10.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) (i) Find the eigen values and eigen vectors of
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$
. (8)

(ii) Verify Cayley-Hamilton theorem for the matrix
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{pmatrix}$$
. (8)

Or

(b) Reduce the quadratic form $2x_1x_2 - 2x_2x_3 + 2x_3x_1$ into the canonical form and hence find its nature. (16)

12. (a) (i) Find the values of a and b that make f continuous on
$$(-\infty, \infty)$$
 if

$$f(x) = \begin{cases} \frac{x^3 - 8}{x - 2}, & \text{if } x < 2\\ ax^2 - bx + 3, & \text{if } 2 \le x < 3\\ 2x - a + b, & \text{if } x \ge 3 \end{cases}$$
(8)

(ii) Find
$$\frac{dy}{dx}$$
 if $y = x^2 e^{2x} (x^2 + 1)^4$. (4)

(iii) If
$$x^{y} = y^{x}$$
, Prove that $\frac{dy}{dx} = \frac{y(y-x\log y)}{x(x-y\log x)}$ using implicit differentiation. (4)

(b) (i) Show that
$$\sin x(1+\cos x)$$
 is maximum when $x=\pi/3$. (6)

 (ii) A window has the form of a rectangle surmounted by a semicircle. If the perimeter is 40 ft., find its dimensions so that greatest amount of light may be admitted.
 (10)

(i) Given the transformations $u = e^x \cos y$ and $v = e^x \sin y$ and that f is a function of u and v and also of x and y, prove that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = (u^2 + v^2) \left(\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2} \right).$ (8)

(ii) Expand $e^x \log(1+y)$ in powers of x and y up to terms of third degree. (8)

(b) (i) Examine for extreme values of $f(x, y)x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (8)

 (ii) A rectangular box, open at the top, is to have a volume of 32 c.c. Find the dimensions of the box, that requires the least material for its construction.
 (8)

 $\mathbf{2}$

30234

3x+1

14: (a)

. 15. (i)

Evaluate [-

(iii) Find the volume of the reel shaped solid formed by the revolution about the y-axis, of the part of the parabola $y^2 = 4\alpha x$ cut off by its latusrectum. (6)

(a) (i) Find the area between the curves
$$y^2 = 4x$$
 and $x^2 = 4y$. (8)

(ii) Change the order of integration in $\int_{0}^{\infty} \int y e^{-y^2/x} dx dy$ and then evaluate it. (8)

 $r^2 = a^2 \cos 2\theta$ about its axis. (8)

3

30234

Reg. No.: E N G G T R E E . C O M

Question Paper Code : 51315

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

First Semester

Civil Engineering

For More Visit our Website EnggTree.com

(Common to : All Branches (Except B.E. Marine Engineering))

MA 3151 - MATRICES AND CALCULUS

(Also Common to PTMA 3151-Matrices and calculus for B.E. (Part-Time) First Semester-All Branches-Regulations 2023)

(Regulations 2021)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 marks)$$

- 1. If λ is an eigenvalue of a matrix A, then prove that λ^2 is an eigenvalue of A^2 .
- 2. If $x = [-1, 0, 1]^T$ is the eigenvector of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$, then find the corresponding eigen value.
- 3. Sketch the graph of the function f(x)=2.0-0.4x and find the domain of the function.
- 4. Differentiate $y = x \tan(\sqrt{x})$ with respect to x.
- 5. Verify Euler's theorem for the function $u = x^2 + y^2 + 2xy$.

6. If
$$u = x - y$$
, $v = y - z$, $w = z - x$, then find the Jacobian $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

7. What is wrong with the equation $\int_{-2}^{1} \left[\frac{1}{x^{4}}\right] dx = \int_{-2}^{1} \left[x^{-4'}\right] dx = \left[\frac{x^{-3}}{-3}\right]_{-2}^{1} = -\frac{3}{8}.$

8. Evaluate $\int_{-1}^{1} \left[\frac{\tan x}{1 + x^2 + x^4} \right] dx$ by using the concept of odd and even functions.

9. Evaluate
$$\int_{1}^{2} \int_{0}^{x^*} [x] dy dx$$
.

12.

10. Write the integral equation for the regions $x \ge 0$, $y \ge 0$, $z \ge 0$, $x^2 + y^2 + z^2 \le 1$ by triple integration.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Find the eigenvalues and eigenvectors of the given matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}.$ (S)

(ii) Using Cayley-Hamilton theorem, find the inverse of the given
matrix
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 1 \\ 1 & 0 & -2 \end{bmatrix}$$
. (S)

Or

(b) Reduce the quadratic form $3x_1^2 + 5x_2^2 + 3x_3^2 - 2x_3x_3 + 2x_3x_4 - 2x_1x_2$ to a canonical form by orthogonal reduction. (16)

(a) (i) Find the value of
$$\lim_{x \to z} \left[\frac{x^2 - 2}{x^3 - 3x + 5} \right]^3$$
. (8)

(ii) Find the local maximum and minimum values of the function $f(x)=x+2\sin x$ in the interval $0 \le x \le 2\pi$. (10)

Or

- (b) (i) Find an equation of the tangent line to the curve $y = \frac{e^*}{(1+x^*)}$ at the point (1,e/2). (8)
 - (ii) Find the absolute maximum and absolute minimum values of the function $f(x) = \log[x^2 + x + 1]$ in the interval [-1,1]. (8)

2

51315

13. (n) (i) If
$$u = \log \left[x^2 + y^2 + z^2 \right]$$
 then find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$? (8)

(ii) The temperature at any point (x, y, z) in space is given by $T = 400 xyz^2$. Find the maximum temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$. (8)

Or

- (b) (i) Expand $f(x, y) = e^{x+y}$ about the point (0,0) in powers of x and y upto third degree terms by using Taylor's series. (8)
 - (ii) Find the maxima and minima for the given function $f(x,y) = x^3 y^2 [1-x-y]$. (8)
- 14. (a) (i) Evaluate $\int x^2 e^x dx$ by using integration by parts. (8)
 - (ii) Evaluate the integral $\int \sin^4 x \, dx$. (8)

Or

(b) (i) Evaluate
$$\int \sqrt{a_{WV,W}^2 - x_{Z}^2} dx$$
. (8)

(ii) Evaluate
$$\int \frac{1}{(x^2 - a^2)} dx$$
 by using partial fraction. (8)

15. (a) (i) Evaluate
$$\int_{0}^{\pi/2} \int_{0}^{\sin\theta} [r] d\theta dr$$
. (8)

(ii) Change the order of integration in $\int_{0}^{a} \int_{x}^{a} [x^{2} + y^{2}] dy dx \text{ and hence evaluate it.}$ (8)

Or

(b) (i) Evaluate $\iint [xy] dx dy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$. (8)

- (ii) Find the volume of the sphere $x^2 + y^2 + z^2 = 3^2$ by using triple integration. (8)
 - 3

51315

Reg. No. : E N G G T R E E . C O M

Question Paper Code : 21272

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

First Semester

Civil Engineering

For More Visit our Website EnggTree.com

Maximum : 100 marks

(Common to : All Branches (Except Marine Engineering))

MA 3151 — MATRICES AND CALCULUS

(Regulations 2021)

Time : Three hours

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Find the eigenvalues of A^{-1} and A^2 if $A = \begin{pmatrix} 3 & 0 & 0 \\ 8 & 4 & 0 \\ 6 & 2 & 5 \end{pmatrix}$.
- 2. State Cayley-Hamilton theorem.

3. Sketch the graph of the function $f(x) = \begin{cases} x^2 & \text{if } -2 \le x \le 0\\ 2-x & \text{if } 0 < x \le 2 \end{cases}$.

- 4. The equation of motion of a particle is given by $s = 2t^3 5t^2 + 3t + 4$ where s is measured in meters and t in seconds. Find the velocity and acceleration as functions of time.
- 5. If $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$, find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$.
- 6. Write any two properties of Jacobians.
- 7. Evaluate $\int_{0}^{\overline{2}} \sin^{\theta} x \, dx$.
- 8. Prove that the integral $\int_{1}^{1} \frac{1}{x} dx$ is divergent.

9. Evaluate
$$\int_{1}^{23} \int_{1}^{3} xy^2 dx dy$$
.

10. Find the area of a circle $x^2 + y^2 = a^2$ using polar coordinates in double integrals.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) (i) Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{pmatrix}$. (8)

(ii) Using Cayley-Hamilton theorem, find
$$A^{-1}$$
 if $A = \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$. (8)

Or

- (b) Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 12xy 8yz + 4zx$ into the canonical form and hence find its rank, index, signature and nature. (16)
- 12. (a) (i) Let $f(x) = \begin{cases} \sqrt{-x} & \text{if } x < 0\\ 3-x & \text{if } 0 \le x \le 3 \end{cases}$. Evaluate each of the following $(x-3)^2 \text{ if } x > 3 \end{cases}$

limits, if they exist.

- (1) $\lim_{x\to 0^-} f(x)$
- (2) $\lim_{x\to 0^+} f(x)$
- $(3) \quad \lim_{x\to S^-} f(x)$
- $(4) \quad \lim_{x\to 3^*} f(x)$
- $(5) \quad \lim_{x\to 0} f(x)$
- (6) $\lim_{x\to S}f(x)$

Also, find where f(x) is continuous. (8)

(ii) Find the n^{th} derivative of $f(x) = xe^x$. (4)

(iii) Differentiate
$$F(t) = \frac{t^2}{\sqrt{t^3 + 1}}$$
. (4)

Or 2

21272

(b) (i) Use logarithmic differentiation to differentiate
$$y = \frac{x^{3/2}\sqrt{x^2+1}}{(3x+2)^5}$$
. (8)

(ii) Discuss the curve $f(x) = x^4 - 4x^3$ for points of inflection, and local maxima and minima. (8)

13. (a) (i) Given the transformations $u = e^x \cos y$ and $v = e^x \sin y$ and that f is a function of u and v and also of x and y, prove that

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \left(u^2 + v^2\right) \left(\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2}\right)$$
(8)

(ii) Expand e^x cos y in a series of powers of x and y as far as the terms of the third degree.
 (8)

Or

- (b) (i) Examine for extreme values of $f(x, y) = x^3 + y^3 12x 3y + 20$. (8)
 - (ii) A rectangular box, open at the top is constructed so as to have a volume of 108 cubic meters. Find the dimensions of the box that requires the least material for its construction.
 (8)

14. (a) (i) Find a reduction formula for
$$\int e^{\alpha x} \sin^n x \, dx$$
. (8)

(ii) Integrate the following:
$$\int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} dx.$$
 (8)

Or

(b) (i) Evaluate
$$\int \sqrt{\frac{1-x}{1+x}} dx$$
. (8)

- (ii) Find the centre of mass of a semicircular plate of radius r. (8)

15.

(a) (i) Change the order of integration in $\int_{0}^{4} \int_{x^{4}/4}^{2\sqrt{x}} xy \, dy \, dx$ and then evaluate it. (8)

(ii) Find the area enclosed by the curves $y = 2x - x^2$ and x - y = 0. (8) Or

(b) (i) Find the volume of the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. (8)

 (ii) Find the moment of inertia of a hollow sphere about a diameter, given that its internal and external radii are 4 meters and 5 meters respectively.
 (8)

3

21272

Reg. No. : ENGGTREE.COM

Question Paper Code: 70132

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022

For More Visit our Website EnggTree.com First Semester

om Civil E

Civil Engineering

MA 3151 – MATRICES AND CALCULUS

(Common to : All Branches (Except Marine Engineering))

(Regulations 2021)

Time : Three hours

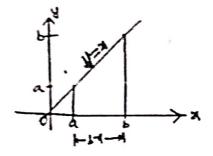
Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. The eigenvalues and the corresponding eigenvectors of a 2 × 2 matrix is given by $\lambda_1 = 8$; $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda_2 = 4$; $x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Find the corresponding matrix.
- 2. Determine the nature, index and signature of the quadratic form $x_1^2 + 5x_2^2 + x_3^2 + 2x_2x_3 + 6x_3x_1 + 2x_1x_2$.
- 3. For what values of the constant c is the function / continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases} cx^{2} + 2x; \ x < 2\\ x^{3} - cx; \ x \ge 2 \end{cases}.$$


4. Find the slope of the circle $x^2 + y^2 = 25$ at (3, -4).

5. Find
$$\frac{\partial^2 w}{\partial x \partial y}$$
, if $w = xy + \frac{e^y}{y^2 + 1}$.

6. Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x^2 + y^2$, x = r - s and y = r + s.

7. Evaluate
$$\int \frac{\tan x}{\sec x + \tan x} dx$$
.

8. Find the area of the region shown in the diagram given below, bounded between x = a and x = b.

- 9. Sketch the region of integration in $\iint_{0,x}^{1,1} f(x,y) dy dx$.
- 10. Change the Cartesian integral $\iint_{y=0}^{y} x dx dy$ into an equivalent polar integral.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) Obtain an orthogonal transformation which will transform the quadratic form $Q = 2x_1x_1 + 2x_2x_1 + 2x_1x_2$ to canonical form.

Or

(b) An elastic membrane in the x₁x₂-plane with boundary circle x₁² + x₂² = 1 is stretched so that a point P = (x₁, x₂) goes over a point Q = (y₁, y₂) given by y₁ = 5x₁ + 3x₂ and y₂ = 3x₁ + 5x₂. Find the principal directions that is, the directions of the position vector x of P for which the direction of the position vector y of Q is the same or exactly opposite. What shape does the boundary circle take under this deformation?

12. (a) (i) Find
$$y^{a}$$
 if $x^{4} + y^{4} = 16$. (8)

(ii) Differentiate $y = (2x+1)^{4} (x^{3}-x+1)^{4}$. (8)

Or

(b) Find the intervals on which $f(x) = -x^3 + 12x + 5$; $-3 \le x \le 3$ is increasing and decreasing. Where does the function assume extreme values? What are those values?

70132

13. (a) Find the maximum and minimum values of the function f(x, y) = 3x + 4yon the circle $x^2 + y^2 = 1$.

Or

(b) Find the Taylor series expansion of the function $f(x, y) = \sin x \sin y$ near the origin.

14. (a) (i) Evaluate
$$\int_{0}^{\pi/2} e^{-4x} \sin bx dx$$
, for $a > 0$. (8)
(ii) Integrate $\int_{0}^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3\cos x + 2} dx$. (8)

Or

(b) (i) Evaluate
$$\int \frac{3x^4 + 3x^3 - 5x^2 + x - 1}{x^2 + x - 2} dx$$
. (8)

(ii) Integrate $\int x\sqrt{1+x-x^2}dx$. (8)

1 7 - 1

15. (a) (i) Change the order of integration in
$$\iint_{xy} dy dx$$
 and hence evaluate.
WWW.Engginee.co.

(8)

(ii) Find the area of the region inside the cardioid $r = a(1 + \cos \theta)$ and outside the circle r = a. (8)

Or

(b) Find the volume of the region bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4. (16)

70132

Question Paper Code : 41520

Beg Na :

B.E./B.Tech. DEGREE EXAMINATIONS, JANUARY 2022.

First Semester

Civil Engineering

MA 3151 - MATRICES AND CALCULUS

(Common to All Branches (Except : Marine Engineering)

(Regulations 2021)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. If 2, -1, -3 are the eigenvalues of a matrix "A", then find the eigenvalues of the matrix $A^2 2I$.
- 2. Write down the matrix for the following quadratic form: $2x_1^2 - 2x_2^2 + 4x_3^2 + 2x_1x_2 - 6x_1x_3 + 6x_2x_3$.
- 3. Find the domain of the function $f(x) = \frac{2x^3 5}{x^2 + x 6}$.
- 4. Evaluate the limit $\lim_{x\to 1} \frac{x^2 4x}{x^2 3x 4}$.

5. If
$$u=x^3+y^3$$
 where $x=a\cos t$ and $y=b\sin t$ then find $\frac{du}{dt}$.

- 6. If $u = \frac{2x y}{2}$ and $v = \frac{y}{z}$ then find $\frac{\partial(u, v)}{\partial(x, y)}$.
- 7. Given that $\int_{0}^{10} f(x) dx = 17$ and $\int_{0}^{10} f(x) dx = 12$ then find $\int_{3}^{10} f(x) dx$.

- 8. Determine whether the integral $\int_0^\infty \frac{dx}{x^2+4}$ is convergent or divergent.
- 9. Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2\cos\theta} d\theta \, dr$.
- 10. Evaluate $\int_0^1 \int_0^2 \int_0^3 \left[x \ y^2 z \right] dx \ dy \ dz$.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}.$ (8)

(ii) Using Cayley — Hamilton theorem find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}.$ (8)
Or
Reduce +b-

(b) Reduce the quadratic form $3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_1 x_2 + 2x_1 x_3 - 2x_2 x_3$ to canonical form through an orthogonal transformation. Also find its nature, rank, index and signature. (16)

12. (a) (i) If $x^2 + y^2 = 25$, then find $\frac{dy}{dx}$ and also find an equation of the tangent line to the curve $x^2 + y^2 = 25$ at the point (3,4). (8)

(ii) If $f(x) = xe^x$ then find f'(x). Also find the n-th derivative f''(x). (8)

Or

2

- (b) (i) Differentiate the function $f(x) = \frac{\sec x}{1 + \tan x}$. For what values of x, the graph of f(x) has a horizontal tangent? (8)
 - (ii) Find the absolute maximum and absolute minimum values of the function $f(x) = 3x^4 4x^3 12x^2 + 1$ on the interval [-2, 3]. (8)

41520

10 25

13. (a) (i) If
$$u = \log [\tan x + \tan y + \tan z]$$
 then find the value of $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z}$. (8)

(ii) Find the minimum value of
$$f(x, y) = x^2 + y^2 + 6x + 12$$
. (8)

Or

14. (a) (i) Evaluate
$$\int \cos^n x \, dx$$
 by using integration by parts. (8)

Or

(ii) Evaluate
$$\int \frac{dx}{\sqrt{3x-x^2-2}}$$
. (8)

(b) (i) Evaluate
$$\int \frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} dx$$
 by using the method of partial fractions. (8)

(ii) Evaluate
$$\int \frac{2x+3}{x^2+x+1} dx$$
. (8)

15. (a) (i) Evaluate
$$\iint [x y] dx dy$$
 where the region of integration is bounded
by the lines x-axis, $x=2a$ and the curve $x^2=4ay$. (8)

(ii) Change the order of the integration in
$$\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} [x y] dy dx$$
 and hence evaluate it. (8)

(b) (i) Evaluate
$$\int_0^a \int_y^a \left[\frac{x}{x^2 + y^2} \right] dx dy$$
 by changing into polar coordinates.

(ii) Evaluate
$$\int_0^{2a} \int_0^x \int_y^x [x \ y \ z] \ dz \ dy \ dx \ .$$
(8)

3

41520

TOTAL