

COLLEGE OF ENGINEERING Approved by AICTE, New Delhi Affiliated to Anna University, Chennai

Department

: ME CHANSCAL

Subject Code & Name : ME3451 276

Class & Batch

: 110

Semester

Le

CONTENTS - COURSE FILE

	CONTENTS - COURSE FILE	REMARKS
S.NO	PARTICULARS	TILIVII III.
1	Time Table	
2	Student name list	
3	Student arrear list	
4	Subject Information Record	
5	Syllabus	
6	Lesson Plan	
7	Test Plan for the Subject	
8	Result Analysis	
9	Corrective Action Report	
10	Quality objective monitoring record	
11	Internal test mark sheet(Consolidated)	
12	Internal test question paper with answer key	
13	Model question paper with answer key	
14	Slip test question paper with answer key	1.
15	Sample Answer paper for all test(Min-3)	
16	Content beyond the syllabus	
17	Tutorial Class – schedule and content	
18	Assignment – schedule and paper	
19	PPT - handout	
20	Question bank	
21	Sample university question papers(min 5 QP-recent exam)	
22	Personal Log book – Updated	
23	Lecture Note	
24	Special Class if any, Approval letter, Schedule, content covered.	

	Prepared By	Approved By
Sign:	S.A.M.J.	SAM
Name:	J.A.RAMGSH	S A-Ramesh
***	Faculty	HoD

CLASS TIME TABLE

Department of Mechanical Engineering

ACADEMIC 2023-2024 EVEN

4.3.2024 YEAR/SEM: II/IV VIII VII VI V IV 111 HOUR 11 2.50 PM 12.35 PM 2.05 PM 3.05 PM to 3.50 PM to 10.40 AM 1.20 PM TO 10.55 AM 11.45 AM 9.50 AM 9.00 AM to to TO 2.50 DAY TO 2.05 3.05PM 4.30 PM 3.50 PM to 1.20 PM to 10.40 to to 9.50 10.55 AM PM TIME PM 12.35 PM 11.45 AM ΛM ΛM TE TE MONDAY TUESDAY TE Lunch WEDNESDAY Break TE THURSDAY TE FRIDAY SATURDAY

S.No	Course Code	Course Name	Acronym	Name of th	e Staff & Dept.	Hours
1	ME3451	Thermal Engineering	ТЕ	Mr.S.A.Ra	mesh/ AP/Mech	5
· · · · · · · · · · · · · · · · · · ·					TOTAL	48
Since VERSON	Prepared by	Verifi	ied by		Authorized by	
Sign:	D.M.	CA-M	L		Me	
Name:	O.D.Navcen	Mr.S.A.	Ramesh		Dr.M.Vijayakuma	г
1-11	TIME TABLE I/C	HOD/	месн		PRINCIPAL	

Department of Mechanical Engineering

Students Name List

YEAR /SEM:II/IV

Academic Year: 2023-2024

S.No.	Register Number	Name of the Student	H / D
l Maria	732422114001	Manikkavel V	Н

HOD/Mech Engg

Principal

Department of Mechanical Engineering

Students Arrear List

YEAR /SEM:II/IV

Academic Year :2023-2024

S.No.	Register Number	Name of the Student	Number of Arrear
1.	732422114001	Manikkavel V	Nil

HOD/Mech Engg

Principal

SUBJECT INFORMATION RECORD

-	-	and the
	CHAR	6.00

: MECHANICAL ENGINEERING

Subject

: TG

Year

1

Semester

iv

Last year handled by

: 1. A. Romest

(00 x.

Percentage of Result (last year)

Quality Objectives

: 1. To lease me consend T-G

2: To Evalure PETOF Turbin

3. To anas worry IC Em

Reference Book

1. P.Ic. NAOS. Thomas Engineers

The state of the s	Prepared by	Verified by
Sign	SAUJ	SAM
Name:	S A. Panesh	1A-Ramos)
	Faculty	HOD

ME3451

THERMAL ENGINEERING

L T P C 4 0 0 4

COURSE OBJECTIVES:

To learn the concepts and laws of thermodynamics to predict the operation of thermodynamic cycles and performance of Internal Combustion(IC) engines and Gas Turbines.

To analyzing the performance of steam nozzle, calculate critical pressure ratio

To Evaluating the performance of steam turbines through velocity triangles, understand the need for governing and compounding of turbines

To analyzing the working of IC engines and various auxiliary systems present in IC engines

To evaluating the various performance parameters of IC engines

UNIT I THERMODYNAMIC CYCLES

12

Air Standard Cycles - Carnot, Otto, Diesel, Dual, Brayton - Cycle Analysis, Performance and Comparison, Basic Rankine Cycle, modified, reheat and regenerative cycles.

UNIT II STEAM NOZZLES AND INJECTOR

12

Types and Shapes of nozzles, Flow of steam through nozzles, Critical pressure ratio, Variation of mass flow rate with pressure ratio. Effect of friction. Metastable flow.

UNIT III STEAM AND GAS TURBINES

12

Types, Impulse and reaction principles, Velocity diagrams, Work done and efficiency – optimal operating conditions. Multi-staging, compounding and governing. Gas turbine cycle analysis – open and closed cycle. Performance and its improvement - Regenerative, Intercooled, Reheated cycles and their combination.

UNIT IV INTERNAL COMBUSTION ENGINES – FEATURES AND COMBUSTION

IC engine – Classification, working, components and their functions. Ideal and actual: Valve and port timing diagrams, p-v diagrams- two stroke & four stroke, and SI & CI engines – comparison. Geometric, operating, and performance comparison of SI and CI engines. Desirable properties and qualities of fuels. Air-fuel ratio calculation – lean and rich mixtures. Combustion in SI & CI Engines – Knocking – phenomena and control.

UNIT V INTERNAL COMBUSTION ENGINE PERFORMANCE AND AUXILIARY SYSTEMS 12

Performance and Emission Testing, Performance parameters and calculations. Morse and Heat Balance tests. Multipoint Fuel Injection system and Common rail direct injection systems. Ignition systems – Magneto, Battery and Electronic. Lubrication and Cooling systems. Concepts of Supercharging and Turbocharging – Emission Norms

TOTAL: 60 PERIODS

OUTCOMES: At the end of the course the students would be able to

- Apply thermodynamic concepts to different air standard cycles and solve problems.
- 2. To solve problems in steam nozzle and calculate critical pressure ratio.
- 3. Explain the flow in steam turbines, draw velocity diagrams, flow in Gas turbines and solve problems.
- 4. Explain the functioning and features of IC engine, components and auxiliaries.
- 5. Calculate the various performance parameters of IC engines

TEXT BOOKS:

- 1. Mahesh. M. Rathore, "Thermal Engineering", 1st Edition, Tata McGraw Hill, 2010.
- 2. Ganesan V, "Internal Combustion Engines" 4th Edition, Tata McGraw Hill, 2012.

REFERENCES:

- 1. Ballaney. P, "Thermal Engineering", 25th Edition, Khanna Publishers, 2017.
- Domkundwar, Kothandaraman, &Domkundwar, "A Course in Thermal Engineering", 6th Edition, DhanpatRai& Sons, 2011.
- 3. Gupta H.N, "Fundamentals of Internal Combustion Engines", 2nd Edition Prentice Hall of India, 2013.
- 4. Mathur M.L and Mehta F.S., "Thermal Science and Engineering", 3rd Edition, Jain Brothers Pvt. Ltd, 2017.
- 5. Soman. K, "Thermal Engineering", 2nd Edition, Prentice Hall of India, 2011.

DIRECTOR

Centre for Academic Courses

Anna University, Chennai-600 025

Departme +

MECHANICAL DSUVITHA

Faculty Name

Date $: h/3/2\gamma$ Semester : IV

Subject Code & Title : GE3451 & Environmental science & Sustainability
Class : 1

LESSON PLAN

					1			
S.No.	Ргоро	-	Details of Topic Covered	TA	Ref.		ctual	HOD
	Date	Period	UNIT I - ENVIRONMENT AND BIODI	VEDSI	TV	Date	Period	,
				VERSI	11	Т		
1	4/3/24	3	Definition, scope and importance of environment, need for public awareness	١	1	4,13/24	3 /	
2	5/3/24	1	Concept of an ecosystem, Energy flow, ecological succession.	1	1	5/3/24	1/	
3	6/3/24	8	Types of biodiversity: genetic, species and ecosystem diversity	1	. 1	6/3/24	8	
4	7/3/24	6	Values of biodiversity, India as a mega- diversity nation	١	Ţ	7/3/24	6	
5	9/3/24	2	Hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man- wildlife conflicts	1	1	9/3/24	2	, F _i ,
6	2/3/24)	Endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ)	1	12/3/24	- (2
			UNIT II - ENVIRONMENTAL POL	LUTI	ON			-
7-	13/3/24	٦	Causes, effects and preventive measures of water soil pollution	1	2	13/3/24	7	
8	13/3/24	8	Causes, effects and preventive measures of air and noise pollution	(2	13/3/24	.8	
9	14/3/24	6	Solid, Hazardous waste management.	1	2	14/3/24	6	
10	14/3/24	_7_	E-Waste management	.1	2	14/3/24	7	
, II·	16/3/24	2	Case studies on Occupational Health and Safety Management system (OHASMS).	١	2	16/3/4	2	
12	18/3/24	3	Environmental protection and Environmental protection acts.	- 1	. 2	19/3/24	3	8
			UNIT III - RENEWABLE SOURCES (OF EN	ERGY			-1
13	21/3/24	6	Energy management and conservation	١	1	21/3/24	6	
14	25/3/24	3	New Energy Sources: Need of new sources.	1	1	258/24	3	,
.15	28/3/24	6	Different types new energy sources	1	2	28/3/24	6	``
16	1/4/24	3	Applications of- Hydrogen energy	71	2	1/4/24	3	
17	4/4/24		Ocean energy resources, Tidal energy conversion	1	2	4/4/24		-
18	6/4/24	2	Concept, origin and power plants of geothermal energy.	1	2	6/4/24		P

			UNITED - SUSTAINABILITY AND M	ANA	GEMEN	T		
19	\$14/24	3	Development, GDP .Ustainability- concept, needs and challenges	1	2	8/9/24	3	1507 Tiple:
20	9/4/24	1	Conomic, social and Environmental aspects of sustainability	1	2	9/4/24	1	
21	13/4/24	2	From unsustainability to sustainability- millennium development goals	1	2	13/4/24	2	The property of the second
22	15/4/4	3	Sustainable protocols, Sustainable Development Goals targets, Sustainable indicators and intervention areas	,	2	15/4/24	3	
2.3	22/124	3	Climate change- Global, Regional and local environmental issues and possible solutions-case studies	1	2	ogy/sy	3	0
24	25/4/24	Ь	Concept of Carbon, Credit, Carbon Footprint, Environmental management in industry-A case study.	1	2	29/4/24	3	1
			UNIT V - SUSTAINABILITY PRA	CTIC	ES			
25	29/4/24	4	Zero waste and R concept, Circular conomy, ISO 14000 Series	1	,	29/9/54	4	
26	30/4/24	1.	Material Life cycle assessment.Environmental Impact Assessment	1	2	30/9/24	1	
27	6/5/24	3	Sustainable habitat: Green buildings, Green materials, Energyefficiency, Sustainable transports.	.1	2	વીકૃષ્ય	6	
28	13/5/24	3	Sustainable energy: Non-conventional Sources, Fnergy Cycles	t	2	21/5/24	1	
29	23/5/24	6	Carbon cycle, emission and sequestration	ı	2	doppey	2	
30	<i>30</i> 5 24	1	Green Lugineering: Sustainable orbanization- Socio-economical and technological change	l	2	30/5/24	1	B

Text Books:

- L. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016
- 2. Gilbert M. Masters, Introduction to Lavironmental Engineering and Science", 2nd Edition, Pearson Education 2004.

References:

- 1. Dharmendra S. Sengar, "Luvironmental law", Prentice Hall of India PVT LTD, New Delhi, 2007,
- Rajagopalan, R. "Environmental Studies-From Crisis to Cure", Oxford University Press, Third Edition 2015.
 Teaching Aids (TA):
 - I. A. Black Board with Chalk
 - 2 B. Over Head Projector
 - 3 LCD Projector
 - 4 Others (Field visit, Charts, Cutset Models)

111111111111111111111111111111111111111	Cachareq pi	Verified by	Authorized by
Sign	Sout	S.A.M.	me!
Name	D. Suvither	S.A. RAMGSH -	Dr.M.Vijaya Kumar
Longonia	The same and the same and	HOD	Principal

TEST PLAN FOR SUBJECT

Subject

: TE

Faculty: S.A. Rames

Semester

Year:

Department: MG(HANSU

S. No.	Description	Planned Date/Month	Actual Conducted Date / Month	Remarks
1.	UNITTEST -1	1/9/29	1/4/23	
2	UNTTEST	In/4 /24	24/4/24	
3.	ひんらりたらうころ	13/5/24	13/5/24	
4	UNIT TOSY-4 MODEL GA	27/5/27	27/5/2	

	Prepared by	Verified by
Sign:	SAM	SA-NS
Name:	S-A-Ramesh Faculty	SA-Ramofs HOD

Subject

Date

: 2/4/m

Class

Department

: Mechanical

Semester

Exam details & date

UNITTEST -+ 1/23

Faculty

: S.A-Ramph

Number of students

01

No. of students attended

01

No. of students absent

No. of students passed

01

No. of students failed

Percentage of failures

OX,

Marks	0-25	26-50	51-75	76-90	91-100
No. of Students		_		1	

	Prepared By	Approved By
Sign:	SAM	S Amy
Name:	S-A-Rames	S.A. Runess
	Faculty	HOD

Subject

: TE

Date

: 25/1/2

Class

Department

: Mechanical

Semester

Exam details & date

: 24/4/27 UNITYEST -11

Faculty

: L.A.Rameh

Number of students

01

No. of students attended

No. of students absent

No. of students passed

01

No. of students failed

0

Percentage of failures

0 %

Marks	0-25	26-50	51-75	76-90	91-100
No. of Students		-			Wegginering .

	Prepared By	Approved By
Sign:	Shuff	CANCE
Name:	s A. Ramely	J A-Ramos
	Faculty	ROD

Subject

Date

: 17/5/3

Class

Department

: Mechanical

Semester

13/5/2 2 UNIT TEST IIT S.A. Rumosh

Faculty

Number of students

Exam details & date

No. of students attended

No. of students absent

PH

No. of students passed

No. of students failed

Percentage of failures

Marks	0-25	26-50	51-75	76-90	91-100
No. of Students	# 			_	_

	Prepared By	Approved By
Sign:	JA-N	- SA-nun
Name:	S. A. Ramesh	1.A.Ramesh
	Faculty	HOD

Subject

Date

: 28/5/27

Class

Department

: Mechanical

Semester

Exam details & date

: MODEL FRAM-I

Faculty

Number of students

01

No. of students attended

01

No. of students absent

No. of students passed

No. of students failed

Percentage of failures

100 r.

Marks	0-25	26-50	51-75	76-90	91-100
No. of Students	_	1))

	Prepared By	Approved By
Sign:	3 A-mg	S.A. M
Name:	s. A. Rumest	SA-RAMOSIA
	Faculty	HOD

CORRECTIVE ACTION REPORT

Dept.

: MEC4

Year

TI

Subject

: TE

Semester

IV

<

S.No	Unit Test	Percentage of marks	Root Cause (Metrics)	Corrective Action	Deadline date	Remarks
1	UNIT TEST	(00 r	_	_	.)
2	UNITIESTE	100%		_		
3	UNIT TEST-I		rotedical Fashe	-	,	
4	model Exam	07.	(modivate the studing	ndy woll	
				7 3-31		

	Prepared By	Approved By
Sign:	s. A-my	JA-N
Name:	S-A-Ramess	SA. Ramosh
	Faculty	HOD

QUALITY OBJECTIVE MONITORING RECORD

Department: Mechanical Engineering

Year

 $: \mathbb{I}$

Semester

Subject

: Thormal Engineering

	Giree in 1											
Note that the second of the se		Unit	l'est-I	Unit 7	rest-11	Unit T	est-III	Unit T	est -IV CSL	Unit T	est-V	
enderwaters consistent for proceedings of the second of the constant of the co	Quality Objective	Expecting result	Obtained result	Expecting result	Obtained result							
	To lean a obove Twising nozzte, sc Engines	(∞,	look.	[00 x.	(@Y.	loox	_	(00x-	O x.			

the state of the s	Prepared By	Approved By
Sign:	SAM	SAMP
Name:	S.A. Ramosh	1 A-Ramost
	Faculty	HOD

DEPARTMENT OF MECHANICAL ENGINEERING

CONSOLIDATED MARK STATEMENT - TE

YEAR/CLASS:

II MECH

SEMESTER: IV

					~			
S.NO	REG.NO	NAME	Slip Test-1	Slip Test-2	INT-1	INT-2	INT-3	MODE
1	732422114001	MANIKKAVEL V	6	9	40			EXAM
	TOTAL NUMBER				40	41	AB	42
1		The state of the s				1	1	1
	NUMBER OF STUDENT PRESENT NUMBER OF STUDENT ABSENT			1	1	0	1	
			0	0	0	0	1	0
	NUMBER OF STU	The state of the s	0	0	1	1	0	0
1	NUMBER OF STU	The state of the s	1	1	0	0	0	1
L	PASS PERCENTA	GE	0	0	100	100	0	

S.A.m.g

FACULTY

HOD

PRINCIPAL

Register Number:			The same of	and also				LYSE STREET, S
Principle of the second	-	-	-	-	-	1	-	

SASURIE COLLEGE OF ENGINEERING

~	Unit Test	- 1	D.4. 60	-			
Course code	ME3451		Date/Session	01.04.2024	Marks	s 50	
Regulation		Course Title	Thermal Engine	ering			
Year	2021	Duration	1 Hours 30 Min		da Vann	1 2022 102	
111		Semester	the same of the sa		-	2023-2024	
COURSE OU	COMES	Continue	IV	Departi	nent	MECH	
CO3: T fc CO4: T	o analyzing the per o Evaluating the per or governing and co o analyzing the wo	ts and laws of thermo ance of Internal Comb rformance of steam to erformance of steam to empounding of turbine rking of IC engines ar irious performance pa	ozzle, calculate criti urbines through vel	ical pressure locity triangles	ines. atio s, understa	and the need	

Q.No.		-	
71	Question	CO	BTS
1	PART A (Answer all the Questions 10 x 2 = 20 Marks) What are the assumptions made in the interval of the control of the cont		
	assumptions made in air standard cycle?	COI	
2	Define mean effective pressure and see	COI	R
	Define mean effective pressure and comment its application in internal combustion Engines.	COI	U
3	What are the factors influencing the ideal Brayton cycle efficiency?		U
4	Define air standard cycle efficiency.	COI	R
5	Define cut-off ratio	COI	R
6	Write any four differences between Otto and Diesel cycle.	COI	R
7	Define mean effective pressure as applied to gas power cycles	COI	R
8	Define air standard efficiency	COI	R
9	What are the various types of gas power cycles?.	COI	U
10	Draw an actual valve timing diagram of a four stroke diesel engine.	COI	R
	PART B	COI	R
11	(Answer all the Questions $2x \cdot 15 = 30 \text{ Marks}$)		1
	peak pressure and Temperature, work output per kg of air and air standard efficiency assume Take for air $Cv = 0.717 \text{ kJ/kg K}$ and $\gamma = 1.4 \text{ for air}$	COI	R
12	Brief the working of Otto cycle with the help of p-V diagram, T-s diagram and derive the air standard efficiency of the cycle.		
		COI	Е

Course Faculty (S.A.Ramesh)

HoD (S.A.Ramesh)

Principal (Dr.M.Vijayakumar)

KEY HINT

Department

: MECHANICAL ENGINEERING

Name of the Exam

: UNIT TEST 1

Subject code/Subject's Name: ME3451 / THERMAL ENGINEERING

Date of the Exam

:01.04.2024

Part - A

1. Assumptions Made in Air Standard Cycle:

- The working fluid is considered as a perfect gas, typically air, and its specific heats are assumed
- o The combustion process is assumed to be replaced by heat addition from an external source, as the
- o All processes in the cycle are reversible.
- o There are no changes in mass in the cycle (closed cycle).
- No losses due to friction or heat transfer with the surroundings.

2. Define Mean Effective Pressure and Its Application in IC Engines:

- o Mean Effective Pressure (MEP): It is the average pressure exerted on the piston during a cycle. MEP is used to compare engine performance and is calculated as: $MEP=Work\ output\ per\ cycleDisplacement\ volume \ text\{MEP\} = \ frac\{\ work\ output\ per\ out$ cycle}}{\text{Displacement volume}}MEP=Displacement volumeWork output per cycle
- o Application: MEP is useful for assessing engine performance independent of the engine size and is an indicator of the engine's capacity to do work.

3. Factors Influencing Ideal Brayton Cycle Efficiency:

- o Compression ratio: Increasing the compression ratio improves the cycle efficiency.
- \circ Specific heat ratio (γ): Higher values of γ increase efficiency.
- o Turbine and compressor efficiencies: Ideal efficiencies assume no losses, but in practical cycles. the efficiency of these components affects the total cycle efficiency. 4. Define Air Standard Cycle Efficiency:

o It is the efficiency of an idealized thermodynamic cycle assuming the working fluid is air and that processes are reversible. It represents the theoretical maximum efficiency of cycles like Otto,

5. Define Cut-Off Ratio:

o In a Diesel cycle, the cut-off ratio rcr_crc is the ratio of the cylinder volume after combustion to the volume before combustion (i.e., when fuel injection stops): $rc=V3V2r_c = \frac{V_3}{V_2}rc$ =V2V3 where V3V_3V3 and V2V_2V2 are the volumes at the end and start of combustion, 6. Four Differences Between Otto and Diesel Cycles:

- o Compression Process: Otto uses constant volume heat addition; Diesel uses constant pressure. o Compression Ratio: Otto cycle has a lower compression ratio than Diesel.
- o Efficiency: Otto is more efficient at lower compression ratios, while Diesel becomes more
- o Applications: Otto cycle is used in gasoline engines; Diesel is used in diesel engines, typically in

7. Define Mean Effective Pressure for Gas Power Cycles:

 MEP in gas power cycles is defined similarly as in IC engines, representing the average pressure that would produce the same work output over the cycle as the actual varying pressures in the

- Air standard efficiency is the theoretical efficiency of a heat engine operating on an air standard eyele, representing the maximum achievable efficiency under idealized conditions.
- 9. Types of Gas Power Cycles:
 - o Otto Cycle
 - Diesel Cycle
 - e Dual Cycle (Combination of Otto and Diesel)
 - Brayton Cycle

10. Valve Timing Diagram of a Four-Stroke Diesel Engine:

Drawing is necessary here, but in summary, it shows the timing of intake, compression, power, and exhaust strokes in a Diesel engine. The timing diagram illustrates when the valves open and close relative to piston position and crank angle.

Part - B

Question 11

For the Otto cycle with the following parameters:

- Compression Ratio (r) = 6
- Initial Pressure (P1) = 1 bar
- Initial Temperature (T1) = 27°C (or 300K)
- Heat Added (Qin) = 1170 kJ/kg
- Specific Heat (Cv) = 0.717 kJ/kg K
- Specific Heat Ratio $(\gamma) = 1.4$

Solution Outline:

- Step 1: Use $T2=T1\times r(\gamma-1)T$ 2=T 1 \times $r^{(\gamma-1)}T2=T1\times r(\gamma-1)$ to find T2T 2T2.
- Step 2: Calculate T3T 3T3 using Qin=m·Cv·(T3-T2)Q {\text{in}} = m \cdot Cv \cdot (T 3 T 2)Qin $=m\cdot Cv\cdot (T3-T2).$
- Step 3: Use ideal gas relations to find pressures P2P 2P2 and P3P 3P3.
- Step 4: Calculate work done per cycle and efficiency.

Question 12

Explanation of the Otto Cycle:

- The Otto cycle consists of two adiabatic (isentropic) and two constant volume processes.
- Process 1-2: Adiabatic compression (from intake to compressed state).
- Process 2-3: Heat addition at constant volume (combustion).
- Process 3-4: Adiabatic expansion (power stroke).
- Process 4-1: Heat rejection at constant volume (exhaust).

p-V Diagram: Illustrates the pressure-volume changes throughout the cycle.

T-s Diagram: Illustrates the temperature-entropy changes, showing heat addition and rejection.

Air Standard Efficiency:

• Derived as: $\eta = 1 - 1r(\gamma - 1) = 1 - \frac{1}{r^{(\gamma - 1)}} \eta = 1 - r(\gamma - 1)1$ where rrr is the compression ratio, and γ\gammay is the specific heat ratio.

Course Faculty (S.A.Ramesh)

(S.A.Ramesh)

S A-1

(Dr.M.Vijayakumar)

The state of the s						
Register Number:		7-				-
register rumber:	1 1	1	1 1	1		
Section 1997	 					 - 1

Course co		nit Test - 2	Date/Session	01.04.2024	Marks	50			
	11110431	Course Title	Thermal Engine	ering					
Regulatio	on 2021	Duration	1 Hours 30 Minu						
Year	11	Semester				2023-2024			
COURSE	OUTCOMES	Genrester	IV	Departm	ent I	МЕСН			
CO2:		concepts and laws of ther erformance of Internal Co the performance of stear	illiniistianii () anainac i	and (Sac Lurhi)	200	dynamic 			
CO3:	I U L Valuatini	g the performance of steam and compounding of turb	im turhings through val	cal pressure ra ocity triangles,	understar	nd the need			
CO4:	To analyzing	the working of IC engines	s and various auxilians	systems prose	nt in IC an				
CO5:	To analyzing the working of IC engines and various auxiliary systems present in IC engines To evaluating the various performance parameters of IC engines								

Q.No.	Question	СО	BTS
and any other way of the	PART A (Answer all the Questions 10 x 2 = 20 Marks)		
-	What is steam nozzle?	CO2	A
2	Write about the function of nozzle	CO2	U
3	List the types of nozzle.	CO2	R
4	Define Convergent nozzle.	CO2	R
5	Define divergent nozzle.	CO2	R
6	Define Convergent-Divergent nozzle.	CO2	A
7	Draw the shape of supersonic nozzle.	CO2	R
8	List the effects of friction in nozzle	CO2	U
9	Define critical pressure ratio. Give its expression.	CO2	R
10	Define nozzle efficiency or coefficient of nozzle.	CO2	R
	PART B (Answer all the Questions 2x 15 = 30 Marks)		
11	Derive the condition for maximum flow rate in steam nozzle	CO2	R
12	Steam expands isentropic ally in a nozzle from 1 MPa, 250° C to 10 Kpa. The flow rate of the steam is 1 kg/s. Find the following when the inlet velocity is neglected, (i) Quality of steam, (ii) Velocity of steam at the exit of the nozzle, (iii) Exit area of the nozzle	CO2	A

Course Faculty (S.A.Ramesh) HoD (S.A.Ramesh)

Principal (Dr.M.Vijayakumar)

KEY HINT

Department

: MECHANICAL ENGINEERING

Name of the Exam

: UNIT TEST 2

Subject code/Subject's Name: ME3451 / THERMAL ENGINEERING Date of the Exam

: 22.04.2024

Part - A

1. What is a Steam Nozzle?

A steam nozzle is a passage of varying cross-sectional area through which steam expands, converting thermal energy into kinetic energy to produce high-velocity steam jets. This process is typically used in steam turbines and other applications where high-speed steam is required.

2. Function of a Nozzle:

The primary function of a nozzle is to convert the thermal energy of steam (or any gas) into kinetic energy. This increases the steam's velocity, making it useful for applications such as driving turbine blades, where the kinetic energy of the steam is converted into mechanical energy.

3. Types of Nozzles:

- o Convergent Nozzle: Decreases in cross-sectional area along the flow direction.
- o Divergent Nozzle: Increases in cross-sectional area along the flow direction.
- o Convergent-Divergent Nozzle (C-D Nozzle): First converges, then diverges, allowing supersonic flow at the outlet under specific conditions.

4. Define Convergent Nozzle:

o A nozzle that decreases in cross-sectional area along the direction of flow. It accelerates subsonic fluid flow but cannot achieve supersonic speeds on its own.

5. Define Divergent Nozzle:

o A nozzle that increases in cross-sectional area along the direction of flow. It is used primarily for supersonic flow conditions as it allows further expansion and acceleration of a supersonic fluid.

6. Define Convergent-Divergent (C-D) Nozzle:

A nozzle that first converges to a throat, where the flow reaches sonic speed, and then diverges to further accelerate the flow to supersonic speeds. This type of nozzle is commonly used in applications like rocket engines.

7. Draw the Shape of a Supersonic Nozzle:

The shape of a supersonic nozzle is a convergent-divergent shape, where the nozzle narrows down to a minimum cross-section (the throat) and then widens afterward. At the throat, the flow reaches Mach 1, and the divergent section further accelerates the flow to supersonic speeds.

8. List the Effects of Friction in a Nozzle:

- Friction in a nozzle can lead to:
 - Loss of kinetic energy and lower exit velocity.
 - Increased entropy due to irreversibilities, reducing isentropic efficiency.
 - Decrease in overall nozzle efficiency.
 - Possible pressure losses, causing deviation from ideal expansion.

9. Define Critical Pressure Ratio and Its Expression:

- o The critical pressure ratio is the ratio of the downstream pressure to the upstream pressure at which the flow reaches the speed of sound (Mach 1) at the throat of a convergent-divergent nozzle.
- For a perfect gas, the critical pressure ratio $(Peritical Pinlet \ \{P_{\text{eritical}}\}) \ \{P_{\text{inlet}}\} \ Pinlet Peritical) \ can be given by:$ $Peritical Pinlet = (2\gamma + 1)\gamma\gamma - 1 \text{ frac } P_{\text{critical}}$ $P_{\text{text}\{\text{inlet}\}} = \text{left}(\text{frac}\{2\} \text{ samma } P_{\text{text}\{\text{inlet}\}}) = \text{left}(\text{frac}\{2\} \text{ samma } P_$ + 1} \right)^{\frac{\gamma}{\gamma - 1}} \PinletPcritical=(\gamma + 12)\gamma - 1}}

10. Define Nozzle Efficiency or Coefficient of Nozzle:

Nozzle efficiency (η_nozzle) measures how effectively the nozzle converts thermal energy into kinetic energy. It is defined as the ratio of actual kinetic energy obtained to the ideal kinetic energy without losses:

ηποzzle=Actual kinetic energy at exitIdeal kinetic energy at exit\eta_{\text{nozzle}} = \frac{\text{Actual kinetic energy at exit}} {\text{Ideal kinetic energy at exit}} ηποzzle = Ideal kinetic energy at exitActual kinetic energy at exit

Part - B

Question 11: Derive the Condition for Maximum Flow Rate in a Steam Nozzle

Outline for Derivation:

- Step 1: For a convergent-divergent nozzle, derive the mass flow rate $m' = \rho \cdot A \cdot V \cdot dot\{m\} = \rho \cdot A \cdot V \cdot dot$
- Step 2: Use the isentropic flow relation to express the critical pressure ratio and establish the condition for maximum mass flow rate at the throat.
- Step 3: Show that the maximum mass flow rate is achieved when the pressure ratio between the inlet and the throat reaches the critical pressure ratio.

The key result to derive:

 $m`max=Athroat\cdot pcritical\cdot k\cdot R\cdot Tinlet \dot\{m\}_{\text{max}} = A_{\text{throat}} \ \dot \sqrt\{\rho_{\text{critical}}\} \ \dot \ \cdot \ R \cdot \ T_{\text{inlet}}\} m`max=Athroat\cdot pcritical\cdot k\cdot R\cdot Tinlet \ \dot \ \$

where peritical\rho_{\text{critical}} peritical is the density at critical conditions, and AthroatA_{\text{throat}} Athroat is the area at the throat.

Question 12

Given data:

- Inlet Pressure (P1) = 1 MPa
- Inlet Temperature (T1) = 250°C (or 523 K)
- Exit Pressure (P2) = 10 kPa
- Mass Flow Rate = 1 kg/s
- · Neglect Inlet Velocity

Solution Outline:

- Step 1: Determine the quality of steam at the nozzle exit by calculating the enthalpy drop from inlet to exit (using steam tables or Mollier chart).
- Step 2: Calculate the velocity at the nozzle exit using the energy equation: h1=h2+V222h_1 = h_2 + \frac{V_2^2}{2}h1=h2+2V22 where h1h_1h1 and h2h_2h2 are the specific enthalpies at inlet and exit, and V2V_2V2 is the exit velocity.
- Step 3: Compute the exit area using the continuity equation: A2=m'ρ2·V2A_2 = \frac{\dot{m}}{\rho_2 \cdot V_2}A2=ρ2·V2m' where ρ2\rho_2ρ2 can be calculated from the specific volume or steam tables for the given conditions.

Course Faculty (S.A.Ramesh)

HoD (S.A.Ramesh)

Principal (Dr.M.Vijayakumar)

Register Number:						T	
	_	 _	-	_	_		_

SASURIE COLLEGE OF ENGINEERING

Course code	Unit Test	1-3	Date/Session	14.05.2024	Marks	50	
	ME3451	Course Title	Thermal Engine		Marks	30	
Regulation	2021	Duration					
Year	11	Semester		1 Hours 30 Minutes Academic Year		2023-2024	
COURSE OUT	COMES	Jemester.	IV	Departm	ent N	1ECH	
CO3: To	o analyzing the pe o Evaluating the n	ots and laws of thermance of Internal Comberformance of steam reformance of steam compounding of turbin	nozzle, calculate criti	and Gas Turbir	ies.		
CO4: To	o analyzing the wo	orking of IC engines a			understan	d the need	
CO5: To			and various auxiliary arameters of IC engi				

Q.No.	Question	T 66	
	PART A	CO	BTS
1	Define Steam turbine. (Answer all the Questions 10 x 2 = 20 Marks)		
2	The state of the s	CO2	A
3	Advantage of steam turbine over reciprocating steam engines.	CO2	U
4	Classify steam turbine according to the classification of flow. Classification of steam Turbine	CO2	R
5	Define Impulse turbine.	CO2	R
6	How impulse turbine is classified?	CO2	R
7	What is meant by carry over loss?	CO2	A
8	What are the methods adopted to prevent erosion in steam turbines?	CO2	R
9	What is the purpose of compounding?	CO2	U
10	Distinguish between impulse and reaction turbine	CO2	R
	PART B	CO2	R
	(Answer all the Questions $2x 15 = 30 \text{ Marks}$)		
ton.	Explain the pressure and velocity compounding diagram of multistage turbinewith neat sketch.	CO2	R
12	In a single stage impulse turbine, nozzle angle is 20° and blade angles are equal. The velocity coefficient for blade is 0.85. Find maximum blade efficiency possible. If the actual blade efficiency is 92% of the maximum blade efficiency, find the possible ratio of blade speed to steam speed.	CO2	A

Course Faculty (S.A.Ramesh)

HoD (S.A.Ramesh)

Principal (Dr.M.Vijayakumar)

KEY HINT

PARTA THIERWAL TEST -111

1. Define Steam Turbine:

- A steam turbine is a mechanical device that extracts thermal energy from pressurized steam and converts it into mechanical work. This work is typically used to drive a generator for electricity
- 2. Advantages of Steam Turbine over Reciprocating Steam Engines:
 - Higher Efficiency: Steam turbines operate with higher efficiency, especially in large-scale power
 - Smooth Operation: They provide continuous rotary motion, reducing vibrations and wear compared to the reciprocating motion of steam engines.
 - Higher Speed: Turbines can operate at higher speeds, making them more suitable for power
 - Less Maintenance: Due to fewer moving parts, steam turbines require less maintenance.
- 3. Classify Steam Turbine According to the Classification of Flow:
 - Based on the flow direction of steam, steam turbines are classified as:
 - Axial Flow Turbine: Steam flows parallel to the axis of rotation.
 - Radial Flow Turbine: Steam flows radially relative to the axis.
 - Tangential Flow Turbine: Steam enters tangentially to the blades.
- 4. Classification of Steam Turbine:
 - Steam turbines are classified as:
 - Impulse Turbines: Use the kinetic energy of steam jets directed onto blades to generate rotation (e.g., De Laval turbine).
 - Reaction Turbines: Utilize both the kinetic energy and pressure energy of steam as it expands across the rotor blades (e.g., Parsons turbine).
 - Compounded Turbines: Use combinations of impulse and reaction stages to manage speed and power (e.g., Curtis turbine).
- 5. Define Impulse Turbine:
 - An impulse turbine is a type of steam turbine where the steam expands and converts to kinetic energy in stationary nozzles before it impinges on the moving blades. The blades then redirect the steam flow, changing its direction to generate rotational motion.
- 6. How is Impulse Turbine Classified?:
 - o Impulse turbines can be classified based on the arrangement of the stages:
 - Single-stage Impulse Turbine: Only one set of nozzles and blades.
 - Multi-stage Impulse Turbine: Multiple sets of nozzles and blades, often with compounding methods like pressure or velocity compounding.
- 7. What is Meant by Carry-Over Loss?:
 - o Carry-over loss refers to the loss of kinetic energy when steam exiting one stage of a turbine enters the next stage at a speed higher than necessary, resulting in inefficiency.
- 8. Methods Adopted to Prevent Erosion in Steam Turbines:
 - Use of erosion-resistant materials on blades.
 - Steam conditioning to remove moisture and impurities before entering the turbine.
 - o Blade coating or protective surface treatments to enhance blade durability.
 - Flow control to minimize areas of high-speed droplet impingement.
- 9. Purpose of Compounding:
 - Compounding reduces excessive rotor speed in turbines by dividing the steam expansion across multiple stages. This allows for controlled speed and improved efficiency, particularly in high-

Impulse Turbine: All pressure drop occurs in stationary nozzles, creating high-velocity steam jets. The moving blades change the steam's direction without a further pressure drop.

Reaction Turbine: Both the stationary and moving blades cause steam expansion and pressure drop, with the blades themselves shaped like small nozzles, allowing both kinetic and pressure energy to drive rotation.

Part B

Question 1: Pressure and Velocity Compounding in Multistage Turbines

Explanation:

- Pressure Compounding: In pressure compounding, the total pressure drop is divided among multiple stages of nozzles and blades. Each nozzle creates high-velocity steam jets by dropping the pressure, but only a portion of the total pressure drop. This helps control the velocity at each stage and reduces rotor speeds.
- Velocity Compounding: In velocity compounding, a single pressure drop is achieved in one stage, but
 multiple sets of moving and fixed blades reduce the velocity in steps. This method is often used for small
 turbines and helps manage high inlet velocities.

Diagram:

 Draw separate sketches for pressure and velocity compounding, showing how pressure and velocity vary across each stage.

Question 2: Efficiency and Blade Speed Ratio in a Single-Stage Impulse Turbine

Given data:

- Nozzle angle $\alpha=20$ \alpha = 20^\circ $\alpha=20$ \o,
- Blade angles are equal,
- Blade velocity coefficient K=0.85K = 0.85K=0.85,
- Actual blade efficiency is 92% of maximum blade efficiency.

1. Finding Maximum Blade Efficiency:

- 0 The maximum blade efficiency (ηb\eta_bηb) for an impulse turbine is given by: ηb,max=2·cos 2α1+cos α\eta_{b,\text{max}} = \frac{2 \cdot cos 2α1+cos α\eta_{b,\text{max}}}{1 + \cos 2 \cdot cos 2α}
- Substituting $\alpha=20$ \alpha = 20 \circ $\alpha=20$ \circ $\alpha=2$
 - Calculate cos (20°)\cos(20°\circ)cos(20°), plug into the formula to find ηb,max\eta {b,\text{max}}ηb,max.

2. Actual Blade Efficiency:

Since the actual blade efficiency is 92% of the maximum, it can be calculated as: $\eta b, actual = 0.92 \times \eta b, max = \{b, text \{actual\}\} = 0.92 \times \eta b, max$

3. Finding Blade Speed to Steam Speed Ratio:

- o Blade speed uuu to steam speed VVV ratio can be found as: $uV=K\times\eta b$,actual2\frac{u}{V} = K \times \sqrt{\frac{\eta_{b,\text{actual}}}}{2}}\Vu=K\times2\eta b,actual
 - Substitute K=0.85K=0.85K=0.85 and $\eta b, actual eta_{b,\text{text}} {actual} \eta b, actual from the previous step to find the value of <math>uV = u \{v\} Vu$.

Course Faculty

(S.A.Ramesh)

(S.A.Ramesh)

(Dr.M.Vijayakumar

Paper profession representation and a paper by	September 1	HORSE	Coloring Coppe	economica e	11.95 G/40	mary gards	Figure Visited	Pine Woo
Register Num	ber:							
September 1981 and Company of the second state of the company of the second state of t	and the second second second	-		1 1				1 1

Monthson Comments of the Comme	MODELE	XAM	Date/Session	27.05.2024	Marks	100
ourse code	ME3451	Course Title	Thermal Engine	CANADATAN WITH SEMESTRA SHOULD SEE SEE HER CANADA SE	METEROPORTURA ESPERANTA ANTONIO	SPECIAL PROPERTY OF THE PARTY O
egulation	2021	Duration	J. Hours	Academic	Year 20	23-2024
ear OURSE OUT	11	Semester	IV	Departme	PRODUCTION OF DESCRIPTION	ECH
O2: To	analyzing the pe	ots and laws of thermo nace of Internal Comb rformance of steam n	oustion(IC) engines lozzle, calculate criti	and Gas Turbin	05.	ANTO- CONTRACTORS
THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	contrayzing the pe	rformance of steam n erformance of steam	iozzla, calculata eriti	ical pressure re	tio	
THE RESERVE THE PERSON NAMED IN COLUMN TWO	The second of the C	ompoundina of tarbina	1919			
The same of the sa	evaluating the va	orking of IC engines a arlous performance pa	nd various auxiliary	systems preser	nt in IC eng	ines

Q.No.	Question	CO	BIS
	PARTA	NAME OF TAXABLE PARTY OF TAXABLE PARTY.	Transportation by the same regime
	(Answer all the Questions 10 x 2 = 20 Marks) Define the term stream nozzle.		
2	What is the effect of friction on the flow of	COL	R
3	What is the effect of friction on the flow through a stream nozzle? Define boiler thermal efficiency.	CO2	U
4	What is safety value? And L.C. C.	COL	R
5	What is safety valve? And define safety valve.	CO2	Λ
6	What is meant by Pressure Compounding?	COL	R
7	Define stage efficiency & Diagram efficiency.	CO2	E
8	Explain how cogeneration is advantageous over conventional power plant,	CO3	R
9	Explain the principle of metallic recuperator & explain the term heat-to-power ratio.	CO3	E
10	Estimate the effect of super heat and sub cooling on the vapour compression and s	CO3	R
	[Compare RSHF, GSHF and ESHF,	CO3	U
	PART B		-
11a	(Answer all the Questions 6x 13 = 65 Marks) i. In a steam nozzle, the steam expands from 4 bar to 1 bar. The initial velocity is 60 m/s and the initial temperature is 2000C. Determine the residual temperature is 2000C.		
OVERSION SERVICES	and the initial temperature is 200oC. Determine the exit velocity if the nozzle efficiency is 92%. ii. Describe (Derive) the expression for critical pressure ratio in terms of index of expansion.	COI	R
	OR		Carried Spiritual Control
116	Dry saturated steam at a pressure of 11 bar enters a convergent-divergent nozzle and leaves at a pressure of 2 bar. If the flow is adiabatic and frictionless, determine: (i) The exit velocity of steam. (ii) Ratio of cross section at exit and that at throat. Assume the	COI	U
12a	Explain the function of boiler mountings. Can a boiler work without mountings.		
		COL	u
12b	A boiler generates 13000 kg of steam at 7 bars during a period of 24 hrs and consume 1250 kg of coal whose CV. = 30000 kJ/kg. Taking the enthalpy of steam coming out of boiler = 2507.7 kJ/kg and water is supplied to the boiler at 40°C. Find: (a) efficiency of the boiler (b) Equivalent evaporation per kg of coal.	COI	
13a	A single stage impulse turbine rotor has a diameter of 1.2 m running at 3000 rpm. The nozzle angle is 18°. Blade speed ratio is 0.42. The ratio of the relative velocity at outlet to relative velocity at inlet in The outlet angle of the blade is 3° smaller than the inlet angle. The steam flow rate is 5 kg/s. Draw the velocity diagram and find the following	CO2	E

135	A 50 % reaction purhime to interest OK									
	A 50 % reaction turbine (with symmetrical velocity triangles) running at 400 rpm has the exit angle of the blades as 20° C and the velocity of steam relation to the contribution of the steam relation to the contribution of the steam relation to the contribution of t									
	the exit angle of the blades as 20° C and the velocity triangles) running at 400 rpm has the exit is 1.35 times the mean speed of the blade. The steam flow rate is 8.33 Kg/s and at a particular stage the specific volume is 1.351 m ³ /Vg. Figure 6.									
	and at a particular sec.	the mean spec	ed of the blade	. The steam flow rate is	2 2 3 Kala					
	A cuitable blode Line	the specific	volume is 1.38	The steam flow rate is 1 m ³ /Kg. Evaluate for the importer	6.33 Ng/s	000				
	17 times the blade neigh	t assuming the	e rotor mean d	iameter	is stage. (1)	CO2	E			
	A suitable blade height, assuming the rotor mean diameter 12 times the blade height and (ii) the diagram work									
142	i. Explain any three types of recuperators.									
	ii. What are waste heat	recovery boile	rs? Explain the	nood and been Co. a		CO2	U			
3 84	ii. What are waste heat recovery boilers? Explain the need and benefits?									
150	Explain in detail about	t low temperat	uma Enance D	covery Options and Tech	nologies	CO3				
	har and 0.0 h	ne using R-12	as refrigerant	overy Options and Tech operates between the pro-	essures 2.5	03	A			
	condenses Ta	compression is	s isentropic an	d there is not under coo	ling in the					
	condenser, the vapo	ur is dry an	d saturated co	ondition at the beginni	ng of the					
	condenser. The vapour is dry and saturated condition at the beginning of the compression. Estimate the theoretical COP. If the actual COP is 0.65 of theoretical COP, calculate the net cooling produced per hour. The refrigerant flow is 5 Kg/min.									
			uced per hour.	The refrigerant flow is	5 Kg/min					
	The Properties of Refr	igerant are:			o Rg/IIIII.					
	Pressure Se (Bar) te	etu. Entha	alpy (kJ/kg)	Entropy(kJ/kg K)		CO3	Е			
	1	mp. (C) Liquic	d Vapour	Vapour						
	9.0 36	70.5	5 201.8	0.6836						
	2.5 -7	29.63		0.7001						
	Take specific heat of su	perheated vapo	our at 9 bar as ().64 kJ/kg K.	J					
15b	Air at 25 °C WRT 25%	PH is to be	OR	20.0						
	Air at 25 °C WBT 25% specific humidity. Deter chart. Represent the proc	mine heat tran	conditioned to	22 ° C. DBT and 11 g	m / kg d.a.					
	chart. Represent the proc	ess on chart by	sketch.	dry air referring the psy	chrometric	CO3	E			
			PART C							
16a	In an installation 5 kg	(Answer a	the Questions	1x 15 = 15 Marks) 00°C is supplied to gro						
	nozzles in a wheel	chamber mai	stained at 75	bar. Determine the din	up of six					
	the nozzles of rectan	chijas cance e	maineu at 7.5	bar. Determine the din	nensions of					
	the nozzles of rectangular cross- sectional flow area with aspect ratio 3: 1. The expansion may be considered meta-stable and friction is neglected. Also calculate:									
	1 Walter to the state of the st									
	irreversibility, increases in entropy Ratio of mass flow rate with meta-stable expansion to that if expansion is in thermal excitibility.									
	to that if expansion is in	thermal equili	brium	ow rate with meta-stable	expansion					
166			00			recompany to the last				
***************************************	In a boiler, the following observations were made: Pressure of steam= 10 bar									
	Steam condensed		= 540 kg	/h						
	Fuel used		= 65 kg/h							
	Moisture in fuel		= 2% by							
	Mass of dry flue gases		= 9 kg/kg	111435 2. of first						
	Lower calorific value of	f fuel	= 32000	t I/La						
	Temperature of the fluo		= 325°C	galta		CO3	U			
	Temperature of boiler i	louse	= 28°C							
	Feed water temperature									
	Mean specific heat of f		= 50°C	**						
	Dryness fraction of stear	n = noch	= 1 kJ/kg	K.						
The state of the s		V.75 (J)	was up a near b	arance sheet for the boile	r.					
						_1				

Course Faculty (S.A.Ramesh)

HeD

(S.A.Ramesh)

Principal (Dr.M.Vijayakumar)

Affiliated to Anna University

KEY HINT

Department

: MECHANICAL ENGINEERING

Name of the Exam

: Model Exam 1

Subject code/Subject's Name: ME3451 / THERMAL ENGINEERING

Date of the Exam : 27.05.2024

Part - A

1. Define the Term Steam Nozzle:

o A steam nozzle is a device that allows steam to expand from high to low pressure, converting thermal energy into kinetic energy and increasing steam velocity. It is used in steam turbines to drive the blades.

2. Effect of Friction on Flow Through a Steam Nozzle:

o Friction causes energy losses in a nozzle, reducing the exit velocity and the kinetic energy of the steam. It also increases entropy, reducing the efficiency of the nozzle.

3. Define Boiler Thermal Efficiency:

O Boiler thermal efficiency is the ratio of the useful heat output in the steam to the energy input from the fuel. It is a measure of how effectively the boiler converts fuel energy into steam.

4. What is a Safety Valve? Define Safety Valve:

o A safety valve is a device on a boiler that automatically releases steam when the pressure exceeds a certain limit, preventing overpressure and potential explosions.

5. Define Pressure Compounding:

Pressure compounding is a method used in steam turbines where the total pressure drop of steam
is divided across multiple stages, allowing gradual expansion and reducing velocity at each stage.

6. Define Stage Efficiency and Diagram Efficiency:

- o Stage Efficiency: The ratio of actual work done in a turbine stage to the isentropic work.
- o Diagram Efficiency: The ratio of actual work output to the work represented on a velocity diagram, taking account of the losses in the stage.

7. Advantages of Cogeneration Over Conventional Power Plants:

 Cogeneration systems produce both electricity and useful heat, increasing overall efficiency and reducing fuel consumption compared to conventional power plants, which only produce electricity.

8. Principle of Metallic Recuperator and Define Heat-to-Power Ratio:

o A metallic recuperator transfers waste heat from exhaust gases to incoming air, enhancing thermal efficiency. **Heat-to-Power Ratio** is the ratio of the heat recovered to the electrical power output in cogeneration.

9. Effect of Superheat and Subcooling on the Vapour Compression Cycle:

o Superheating increases the refrigerant's specific volume, raising refrigeration capacity but potentially reducing efficiency. Subcooling increases the cooling effect without increasing compressor work, thereby enhancing cycle efficiency.

10. Compare RSHF, GSHF, and ESHF:

• RSHF (Room Sensible Heat Factor), GSHF (Gross Sensible Heat Factor), and ESHF (Effective Sensible Heat Factor) are ratios that represent the balance between sensible and latent heat loads in air conditioning systems, reflecting different operational requirements and load distributions.

1. Exit Velocity in a Steam Nozzle:

- Given data: P1=4P_1 = 4P1=4 bar, P2=1P_2 = 1P2=1 bar, initial velocity V1=60V_1 = 60V1=60 m/s, T1=200°CT_1 = 200°\circ CT1=200°C, and nozzle efficiency η=92%\eta=92\%η=92%.
- o Approach:
 - Find initial enthalpy, h1h_1h1, at 4 bar and 200°C (using steam tables).
 - Calculate enthalpy at 1 bar, h2h_2h2, considering isentropic expansion.
 - Use nozzle efficiency: $V2=V12+2\eta(h1-h2)V_2 = \sqrt{V_1^2 + 2 \cdot (h_1 h_2)}V2 = V12+2\eta(h1-h2)$
 - Substitute values to find V2V_2V2.

2. Derivation for Critical Pressure Ratio:

For a nozzle, critical pressure ratio $PcriticalPinlet \ \{P_{\text{critical}}\} \ \{P_{\text{inlet}}\} \ Pinlet Pcritical can be derived as: \\ (PcriticalPinlet) = (2\gamma+1)\gamma\gamma-1 \ \{P_{\text{critical}}\} \ \{P_{\text{inlet}}\} \ right) = \\ \left(\frac{2}{\gamma+1}\gamma-1\right)^{-1\gamma} \ right)^{\frac{2}{\gamma+1}\gamma-1}$

where γ \gammay is the specific heat ratio, reflecting the sonic condition at the throat.

Question 11(b)

1. Exit Velocity of Steam:

- o For dry saturated steam, calculate the enthalpy drop using steam tables at 11 bar and 2 bar.
- Use the energy equation to find $Vexit=2(h1-h2)V_{\text{exit}} = \sqrt{2(h_1 h_2)} Vexit=2(h1-h2)$.

2. Cross-Section Ratio (Exit/Throat):

• Use the continuity and energy equations with adiabatic expansion and properties at critical pressure to find the area ratio A2Athroat\frac{A_2}{A_{\text{throat}}}}AthroatA2.

Question 12(a)

Boiler Mountings: Explain mountings such as safety valves, water level indicators, and pressure gauges, which are essential for safe operation. A boiler cannot work safely without these mountings, as they provide necessary controls.

Question 12(b)

1. Boiler Efficiency:

- Boiler Efficiency =Total Heat OutputTotal Heat Input×100%= \frac{\text{Total Heat Output}} {\text{Total Heat Input}} \times 100\%=Total Heat InputTotal Heat Output×100%.
- Total heat output = mass of steam ×\times× enthalpy of steam.
- Total heat input = mass of coal ×\times× calorific value.

2. Equivalent Evaporation:

 Calculate equivalent evaporation per kg of coal based on the boiler's performance at standard conditions.

Question 13(a) and 13(b)

 In both questions, draw and analyze the velocity diagrams based on the given data for turbine rotor or reaction turbine parameters to find required blade angles, velocities, and power.

Question 14(a) and 14(b)

Recuperators: Explain types such as shell and tube, plate, and rotary recuperators, along with benefits of
waste heat recovery.

Low Temperature Energy Recovery: Describe techniques such as absorption chillers and organic Rankine cycles.

question 15(a)

1. Theoretical COP:

OP for an ideal refrigeration cycle =hevaphcomp-hevap=

o Use enthalpies from given data for compression and evaporation.

2. Actual COP and Net Cooling:

o Adjust theoretical COP by actual performance, and calculate total cooling using refrigerant flow rate.

Part - C

Question 16(a)

1. Nozzle Dimensions:

o Use mass flow, pressure, temperature, and meta-stable expansion principles to estimate nozzle

2. Degree of Super-saturation and Under-cooling:

o Calculate based on the deviation from thermal equilibrium, and analyze entropy changes due to irreversibility.

Question 16(b)

Heat Balance Sheet:

o Include boiler output and losses in areas like flue gas, unburnt fuel, and moisture, calculating energy contributions based on specific fuel and operational data.

Course Faculty (S.A.Ramesh)

HoD (S.A.Ramesh) (Dr.M.Vijayakumar)

Internal Assessment Test Answer Book

Name								
Register	V. Maniler	aud		Year/ Semester	r/Section	1110		
Number	132422110001	Date/Session	22.04,0000	Department		IST- MES		
Course code	WK3421	Commercial	Therma	~	no si va a			
Internal Assess	sment Test	IAT 1		IAT 3	Mode	-		
Name and Signature of the Invigilator with date								

Instructi	on to	the Student:	Put tick man	k to th	ne question at	tended	I in the column	against question.
Part A			Part B/ Part C					
Q. No.	V	Marks	Q. NO.	/	a	V	b	Total Marks
					Marks		Marks	
1		2	11	~	12			12
2	/	2	12	~	10/		* 5	12
3	/	V	13		(,)			-
4	~	2	14					
5	/	2	15					
6	/	V	16		1			
7	/	V	,			Gı	rand Total	0.1
8	8 / 2		2 2					
9 /		01	1.1			S. A. Ramesh		
10			1 11			Q.M. Rameth		
Total		17	Grand Total			Name and Signature of the Examiner with date		

		To be fil	led by the	examiner			
Course Outcomes	1	2	3	1			
Marks allotted		50	<u>, </u>	4	5	6	Total
Marks Obtained		1.)					50
	IQAC	Audit - Re	marks				41
					,		
						Name and	l Signature
						of the IQA	C member

Home: A. Monitational Zap: Wenny Essination 6-62400; 22342240001 Dave: 02.04.0004 DERT: BENECHI TEST: UNIT TEST-1 East.B Priven dara: J=20 10=3m b=20km > N=5200 LEW n=5 1d=10mm P, = 15 par 5, 1250 60 = 0.2 por 1,8 10 52 h :001801/00: Blade reposition, Cr = MDH = 4+7+5200 60 = 392,7m/s

From mollier diagram, Corresponding
to 15 bar and 25°C, read enstalled
or SJeam.

h 1 = 2 aso 15/19

N2 = 233019 105

25: 0.86

Head drop by=hi-hr=2900-23300

DN = 500 K5/109

velocity or Steam of inlet a the black

C1 = J 2000 0 + Ah = J2000 x 590 = (0562)

05= 2:24 W3 1178

Area of Queh nozelo.

4 = \frac{\pi}{4} \, \quad = \frac{\pi}{2} \left(0.01)_5 = \lambde 1.52 \tau 10_2 \mu_5

Mass of Steam discharged Through the nozzle. 1000 m = 1000 m= 2+ 1.82 × 10_2 × 1080 · 58 0-8673,24 Fara = Ct. = .371.50 Cari-Co 1020.77-392.7 :-0 = 3536VRIE C+, = \ C61 + (cui - C6) 371.53° 4 (1000.77-392.60) = 729 · 313 m/,

April ad Shrust by =
$$m(C_{E_1} - C_{E_2})$$

 $3 = 0.152 (371.50-C_{E_2})$
 $3 = 0.152 (371.50-C_{E_2})$
 $C_{E_2} = 351.79 \text{ m/s}$
 $3927 = 183.11$
 $0 = 590 (2)$
 $0 = 1351.79 + (3927 = 183.11)$
 $0 = 1351.79 + (3927 = 183.11)$
 $0 = 1351.79 + (3927 = 183.11)$

power loss due . so friction.

27-731° W

River Lata: 2 61=5.8 par 1 20 =0. dae C1 = 102m/2 1 Qr= \$ = 800 N=55 ww =00 55 w \ w= ct. 5 Pa/2 Tip lescage = 51. CE = 0.45 1 CES = 20.44 : northelb? 515272135° 3 = 42.75 mls 2000 1000 000000

$$C_{b} = \frac{C_{f_{1}}}{\sigma.72} = \frac{42.75}{0.72} = 59.38 \,\text{m/s}$$

= ct2, 15 mp

m=4.2 = (4.2 x 0.05) = D.99 m/s From 54 earn table at P, = 2,2 bar Vy = V3=0646.m3/19

we know that

Dm = 0.7961 m ,779.61cm

(m, = (, (o) q = 102 + (o) 200 = 1111/16 ford = CES Cb4 Con (P+ (N5 = C85 = R2.45 = 152.05m/) Fard Es go ·. (m. = 152.05 -200.00=000500 P=m(cin, + (w))(b) = 299546117.26 + 66.24) x59. 550230 m = 40.25 mm

1) then or vossle; CONNEGEM VOSSIG 2) Divergent nozzle 3) courseaser - tinsposer vossité e squerienco; = Actual enshalp NO 55/6 6881.01.6400 & Zewtrobi, c oughybi) drop 2, team gorpine. gen garpine 1,2 a geniné copyect is asky go counant energy or 51eam 10 to mechanical Energy

Rout - A

a) . controver goss ; They relocity or Scheam at Gois 12 Sufficiently . Mish thereby resulting the 10 in etic ENERSY LOST CONTROVA ، دروا The fruction or tired plager 15 to guide the steam on used as dot allow - 1' L for Des bousion institutions es nopeis (ompounding is a method of gosorbing the just velocity in Stages when the steam flow Ever moving blades.

F) Dagosish Combongina ()) Pr- ssurp (ompounding 3) Pressure . nopossi (omboungié the bressme is required in each estage or nozelo rings and hence the officience) is low = wordono on the black
Oneron contini One Toy Supplied to the blace 2 (b((u, + (ua) with the second

Internal Assessment Test Answer Book

Name	V Maniger	avel		Year/ Semester/Sect	ion (1/10
Negister	732402111azər	Date/Session	01/04.24	Department		BEME
Course code	ME 30451	Course Title		Lengineer		
Internal Asses		IAT 1	IAT 2	IAT 3	Model	
Name and Sig	nature of the Invigil					

Instruct	ion to	the Student:	Put tick ma	rk to tl	he question a	ttende	d in the column	against question.
	Part	Λ		I	Part B/ Pai	rt C		
Q. No.	1	Marks	Q. NO.	~	a		Total Marks	
		7741763	Q. No.		Marks		Marks	
1	~	V	11		11			11
2	/	2	12	V	12			12
3	-	2	13					
4		2	14					
5		\	15	15				
6	-	2	16					
7		N		Grand Total 2				23
8		1	· Odried			N. M.		
9	~	1			S.A. Ramen			
10		2	S. A. Parmes			men		
Total		17	Name and Signature Grand Total of the Examiner with date			Signature		

		To be fi	lled by the	examiner			
Course Outcomes	_ 1	2	3	4	5	6	Total
Marks allotted	50						50
Marks Obtained	40						1.0
	IQAC	Audit - Re	emarks				•
							d Signature AC member

Name: V-Manifercard sub: Thermal Emineening Date, ol'od'sood bad No; 4324 22614001 TOSE ' DUITY- I Dele: BEINECH 74 =) The working medium is a perfect - Sar Shroughout. PU = m P.T. => k.le obergapion of gib 6 600 in 6 1.2 goiceionless =) Heat is supplied and reserved in a versible monner. =7 remeptic and bodengial anougher or ste morraina gloriq are ubalected. work done Meon essective = BLESZMO bw store volume @1 piston displacement volume. Mean estective pressure is desined as de constant pressure acting on the proson during working Stole.

3)) Jesendropic Compression 2) Constants volume teat addition 3) Constant frassure roat addition (4) Isenstopic expansion 5) Constant volume reat resection A) Air standard Orde efficiency 1's desined as the somes is of broceer es bergormoc Openations or On a System so that the system oritinal State. altains i'ds cot et rous 12 gériues I heat (addition to the volume before that heat addition. piece cacle 6) 1 0980 CACI 6 1) Heat addition gaves
blace of konstant holome y Heat addition fores place of constant prassura. S compression rodio is 3)(0 mpression topon edng so Exbasiousonio greder than en-passion redion

Pm = P, +2 [2(6-0-4-5) (6-0] (x-1)(--1) 7-1-8-17 - 1-2 (10-1) - 1-8 (10-1) (Y-V(+-1) Air Standard efficiency 1:2 defined as the ratio of work done by the Cycle to the heat Surplied to the Sicle. il Heat supply is increased ii) It decreases the Hermal efficiency (iii) born rotto will be increwed in Specialic volume of air is topured.

15) 0990 Encle;

Denersiple agrapance (a) I rentrobul

2) constant notame port adoption

3) bénouziplé ograpayil En 126040bil

process.

Process : Izevanobil Combremion brocon 2-3 = Courtain rolumb year aggrission 3-4 = Isenstopic expassion H-1 = Constart volume heat residention. 57:34 Grocess 3-4; 53-50 brecerrail; Broces 2-3: Q = m (v (74-Q3 = m (v (To-Ta) W = 0) -QR = mcv (T3-T2) - m(v(T4-7.) Josso = w = m cv [(T3-ta) = (T4-tv)

$$= \left(\frac{\tau_{3-\eta_{1}}}{(\tau_{3-\eta_{2}})} - \left(\frac{\tau_{4-\tau_{1}}}{(\tau_{3-\eta_{2}})} - \frac{\tau_{4-\tau_{1}}}{(\tau_{3-\eta_{2}})}\right)$$

Lotal rolano - N2 = N1-N5 = N1-N3

(georace rolano - N2 = N1-N5 = N1-N3

284016 rolano - N2 = N1-N5

Compression ration!

r=
$$\frac{v_1}{v_2}$$
 = $\frac{7000}{1000000}$ volume
 $v = \frac{v_1}{v_2}$ = $\frac{v_2}{v_3}$

Process 1-2:

$$\frac{\tau_{2}}{\tau_{1}} = \left(\frac{v_{1}}{v_{2}}\right)^{2-1} = \left(\frac{v_{1}}{v_{2}}\right)^{2-1}$$

$$\tau_{2} = \tau_{1}\left(\frac{v_{2}}{v_{3}}\right)^{2-1} = \left(\frac{v_{1}}{v_{3}}\right)^{2-1} = \left(\frac{v_{1}}{v_{3}}\right)^{2-1} = \left(\frac{v_{2}}{v_{3}}\right)^{2-1} = \left(\frac{v_{1}}{v_{3}}\right)^{2-1} = \left(\frac{v_{1}}{v_{2}}\right)^{2-1}$$

$$\tau_{3} = \tau_{4}\left(\frac{v_{2}}{v_{3}}\right)^{2-1} = \left(\frac{v_{1}}{v_{2}}\right)^{2-1} = \left(\frac{v_{1}}{v_{2}}\right)^{2-1} = \left(\frac{v_{2}}{v_{3}}\right)^{2-1} = \left(\frac{v_{1}}{v_{2}}\right)^{2-1} = \left(\frac{v_{1}}{v$$

Ty - 7, () - 1 1- 1 (74-4.) (2-1) 2000 = 1 - (r)p-1 Has equation Puemer p, v, = m 27, e 89 669, DC Pm= workdone Shiept volume = 0 VICUE

2 groke (o.) = 1, 1/5 500P4 =n1 (1-ms) =n1 (1-m) = $\frac{b_1}{(r-1)}$ R= (v(Pal) = m Cv (2-1) L, (2-1) = mcv (70-72) -mcv (44-7,) wcr (43-7) 11 (1-1) = 6, L[m(1)(13-40)-m(1)(14-41)] mer (3-1) x, (n-1) = 81 - C C73 - /2) - C 74 - 4)] (P-18 T, (r-1) brocess 12 Tr = T, (2) -1 5.0 . Bressone Logio.

$$C = \frac{Ru}{R} = \frac{Ru}{R}$$

$$\frac{T_{0}}{T_{0}} = \frac{Ru}{R_{0}} = \frac{Ru}{R_{0}}$$

$$\frac{T_{0}}{T_{0}} = \frac{Ru}{R_{0}} = \frac{Ru}{R_{0}} = \frac{Ru}{R_{0}}$$

$$\frac{T_{0}}{R_{0}} = \frac{Ru}{R_{0}} =$$

(+5) -17 Riven Lata: Cylinder diameter, d= 200m, a. 2m Stroke length, lasoom, oism Volumo, Vo = 1600 Ca Cm = (600Cm ~/earonce = (600 × (06 m) = 0.00 (6 m) 6 = 1 por = 100 km/25 T, = 60 @ = 338 1c P) = 24 ban = 2400 lulm3 50/which! Sproke nolime in = 45 = 4 x (0,0 ton = 0.000 43 m3

Near C 8 Tees (Presser)

Pr = 8. V (10-1) ((10) 1)

| = 100 + 6.89 + (1.61.1) ((6.20) -1)

| = 100 + 6.89 + (1.4-1) ((6.20) -1)

| = 100 + 6.89 + (1.4-1) ((6.20) -1)

'/ (U^)

1 500

21.

1 by 1 1

Internal Assessment Test Answer Book

Name V. Manitereauel W			erene erene gelt und der erene erene der erene ere	Year/ Semester/Section	11/10
Register Number	324 2011 no	Continued to the state of the s	7105.2004	Department	BE. MEGI
Course code	WE3451	Course Title		Engineerin	9
Internal Assessment Test IAT 1			IAT 2	IAT 3 M	odel 💆
Name and Si	gnature of the Invigi	lator with date			

Instructi	on to	the Student:	Put tick mar	k to th	e question at	tended	I in the column	against question.	
I	art.	A	Part B/ Part C						
	1		0.110	/	a	✓ b Total		Total Marks	
Q. No.		Marks	Q. NO.		Marks		Marks		
1	~	2	11	~	11			11	
2	/	2	12					/	
3	V	r	13						
4	/	r	14						
5	~	2	15					,	
6	~	2	16	-	14			14	
7	/	2		Grand Total			25		
8	V	2			^				
9		_		4					
10	V	1		(O		N	1.01	
Tota	l	17	Gı	and	Total		Name and Signature of the Examiner with date		

		To be fil	led by the e	xaminer			
Course Outcomes	1	2	3	4	5	6	Total
Marks allotted	32	32	36	_	_	_	100
Marks Obtained	17	06	19	78000-	_	_	42
		: Audit - Re				Name and	l Signature
of the IQAC member							

Bay PAGE NO. DATE: / / MODEL EXAM-I Name: V. Manily Lavel Reg No: 7324 22 114001 Dept: BE. Mech Sub: Thermal Engineering Subrode: ME3451 Date: 27.05.2024 Etam: Model exam -I or air Standard Sycle. ASSUMPHORS Cucle a perfect 12500 => waxreling of as 90000 => It is follows a law of fr=mf7 Compression Process of and expansion is a reversible adicabatic standard cycle 1-5 nealected. 2) Mean Effective Pressure: effective pressure Pressure is desined \$051HOK during 7/550 Store Store done to the stroke C100+1C (OH) Pisson Constant volume

PAGE NO. DATE: /

Mean effective pressure Pm = Sto work done B Stroke Volume Piston (astar) Piston (astar) Piston (astar) Piston (astar) Crictical pressure ratio: Crictical pressure ratio: Crictical pressure ratio: Is de fined as the pressure ratio which will accolerant the velocity of the mostron the velocity of the mostron to the Seam. It is the re rozzle is Crictical press Nozzle estariency;	-
Pm - Sto work dono Stroke Volumo Piston (astad V Piston (astad V Piston (astad V Piston (astad V Crictical pressure totio: Crictical pressure totio: Crictical pressure to is defined as the press totio which will accolerous the velocity of the mostion the velocity of the mostion to the steam. It is the re to selow through the rozsle is Crictical pres	back and a second
B Stroke Volume PISTON (OBTON) PISTON (OBTON) PISTON (OBTON) CHICKICAL PRESSURE FOR IS LE FINED OS DIR PRESSURE FORO Which will accolerous The velocity of the motion The velocity of the motion The seem. It is the re NOZZE IS CHICTICAL PRESSURE POZZE IS CHICTICAL PRE	
2) Crickical pressure ratio: (rickical pressure ratio: (rickical pressure ratio: (rickical pressure ratio: 13 de rived as the press ratio which will accolerate the velocity as the mostion the velocity as the mostion to the Seam. It is the re 15 slow through the nozzle is Crictical press	And the
2) Crickical pressure ratio: (rickical pressure ratio: (rickical pressure ratio: (rickical pressure ratio: 13 de rived as the press ratio which will accolerate the velocity as the mostion the velocity as the mostion to the Seam. It is the re 15 slow through the nozzle is Crictical press	
3) Crickical pressure ratio: To the Steam. It is the rational the rational pressure	1. 1
Chicking Exercise con general and the result of the mostion of the mostion of the mostion of the seam. It is the result of the seam of the result of the seam of the result of the seam of the result	olur
Chicking bresson Chicking bress 12 Stow Apronay Are bress 12 Stow Apronay Are bress 12 Stow Apronay Are 12 Stow Apronay Are 12 Stow Apronay Are 13 Stow Apronay Are 14 Stow Apronay Are 15 Stow Apronay Are 16 Stow Apronay Are 17 Stow Apronay Are 18 Stow Apronay Are 18 Stow Apronay Are 19 Stow Apronay Are 19 Stow Apronay Are 10 Sto	,
Lossie iz Chictical best Lossie iz Chictica	
Hossie is Chictical been possie or appearant the result of the more on the result of the more on the result of the	31,0
Lossio mych will accolerant The report of the mostion The seam. It is the to the seam. It is the top of the top o	cure
Hossie is Chictical been 12 Elow Apronay Are 12 Elow Apronay Are 12 Elow Apronay Are 12 Alow Apronay Are 13 Alow Apronay Are 14 Alow Apronay Are 15 Alow Apronay Are 16 Alow Apronay Are 17 Alow Apronay Are 18 Alow A	©
To the Steam. It is the real through the real to 25/6 is Chickical bres	
Hossis is Chicfical bies 12 8/000 Apronay que	
HOSSIG 12 CELCTICAL GLEZ	10 and
Lossie is Chictical brez	24,0
Wozzle CHANIERW	201e
7) 10256 644,6000	
	Wat to
the state of the s	No.
nossle Eggicienco il	
defined as the confidence	N
or de nozole obtained	
The actual enthalpy drop	
to the Isenstopic enotals	21.5
drom between the	<i>y</i> .
Same pressure.	
actual enthalar	10
Nozzle estimpnia = actual enthology	grob
22 6Ugeobil Eng	helper
drop.	
	4
	1.349

PAGE NO. DATE: / /

5)	S	feam Tu	1 90'0e;	22211 (1:
			ond not me	
Consideration			as the li	
			LOU OF	
		/	in the	
			f 1.2 Eugen	
(00	e 28t. Ci 6N	Co Fricthou	2, 4, 6, 5
	910	28.60	of wolump	
		* 5	7.71-jour 2007	complet to
6)			
		300 Vira	- 115- VI. 11 7146F	>2.7
	2.120	Paracales	Dubyse, grapis	Peachol
23.0		Blades	Profile Type	
	\mathcal{Y}	Bracks	() () () ()	Type
		Aatual	10 1 2 200 00	2505 1010
	り	blade chand		harring
1 /		1 /2 / 1	· · · · · · · · · · · · · · · · · · ·	
	3)	Admission	Not all	All round for
ii.	de constant de con	or blades	1000g	Compilate
		7	Miew 40M	will con
	(2)	Som El	Con be developed	be developed
	7			
4	C	-	موس	190 416/101
-	2	Ely. CENTA	0.00	h.al
	- National Property of the Pro	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 toward	
	Business of the Business of th	7-31-5	I make the second	1
		- 12 C2 - 12 1 7 1 70 1 70 1 70 1 70 1 70 1 70 1	Time Four Server	3111
4			at the state of th	
×		:		
100		"		

7)	USES OF CONSUMPTOR:
	the conposition ond
	Fuel miswes for the ensines.
ಕ್ರ)	Homo geous mitures;
	Homogenous mixure is literal to the air and fuel is correct mixure in the consumption.
1 7	Hetero Deneous mitwes:
	Literal to the cuit and fuel 15 par 10 cropes property 10 Property midwe in the
Loder.	Couzer brought and with the many
	Sweet Volume?
	Less Shordord efficiency Less Sheep rolume.

	Standard Esticience - volumetric esticiona
	- Swept volume.
	Part B
W	,
9)	Airen;
	Q50 = Q31 x 2
	10 ° 27
7	T1=27=71=27+273 = 3001c
	a. chiling
	Cp = 1.001/15/16912 67
	Cu = 0.717 182/18918
	Solution: . 19 1/1 = 19
	VI= PT, = 283 + 300
	P, 0.9.7
7-	- 0 G 3 m3 116 a
	= 0.95 m 11-9
	U2 = 11 = 0.93
	8
	V2 = 0.12 m ² /1-9
	12 = 00 (1) WI 1-1/1 -
	12 = NJ = 0.17 m3 /100
	321 - 777 -
- 1864 - 284	
	a) use pour section
數	

PAGE	NO.			Mai
DATE	:	-	1	
Mild assertion with page				

2000
620CE22 H-2 2) IZEVALOBIC ENGAZION.
601
V3 = 5,2 milare 1911 (19)
NA = A. 2:3+10
Nn=0.18m2 (100 mm)
Ty (Vy) +0 = 1.507
Qs. = 0 2/4 Qs,
49.25
Cp (-Tq-To) - 2x (v(T)-To)
1 mate (1 and the the the
1.005 (15+73-73) = 2+0.717
100 (T) (00) (00)
21-21-21-12 CICH-10-1-1-10-1
T)=1060.231C3 HON. (.
m= 1 +02 = = 20 × (.26)
Lie con al a 19.8
W=0.5382
land has sin at the sin
Mean le ffection Breczmei
Pm= W = 0.5385
111
093-012
×=5.3 por.

PAGENO. DATE: / /

Ž ——	
	Pont-C
(30)	
16)	
9)	Types maseoline indection System
	The 1:00,000 200 047
	17 Ste petrol Fuel 1's
	He out midere in
	Museoline Sustem.
	V 1003 200 100 100 100 100 100 100 100 100 100
	they are \$100 those of
	injertion system
	W W W W W W W W W W W W W W W W W W W
	Multi Point (AJOCH)
	- 100 00 / C - 100 m.
	1) Multi point fuel injection Sartem
	2) Mono Point (or) Single point feet
	in Jection Sustem.
	I'M JEERON SSS
	2 1. 1. 0 101 0 1010 1000
	Malti Point fied insettion sustem.
	Multi point bud injection
	SUSTEM 12 PORT 1,000 CO 60
	enoine in our and fuel
	Sobla es Good to the
	engines. The air and
	suel mysures ar even
	- Nothing and
./	

PAGE NO DATE: / /

the main advantages of rule fuel insection system is air and End is proportly without in so the over ensines fuel Multi port

Mono point (Ot) Sizale point And invenor synt Mono point fuel injection sustan is a throughte point inienter System. The Shottle 1.5 Vearing so the Evolute is the vitue of air ord fad. This a single Single 20/ ote strostle Sustem. The shrottle point 15 six spray the our and feel miseure. in a froste engil Single Mono point fact iniestor SUSEM.

Name . V. Maniferand Sub: Thornal Engineering regno: 7324 22114001 Subcode: ME3451 Dept: BEMECE IT Air Standard (DICLE Efficience) It is the esticionar of an idealized Hermody names (yd & assuming The working Stund is an and show Process one reversible. 2) Cut-088 Pation-17 RIE TYNSTILATIONS ENCLE , HE (mt -off ratio LCL : GLC 12 taylo of the Entingen notine after comparion for 86 roland pelone (omprission. The volumes at the End and start Combusion respectively. 90)

for the party against

3) Mean effective Pressure:

onions or on serving sings pomer cons representing the onergoe Brasians That would produce the same work output vous the sucles.

· Construction of the horasting, with

THE RELEASE STATE OF THE PARTY warming the first own of the mines were the

worth has been an hour to commence his Property and Strangery

· 10/404 130 . 100 100

AND THE PROPERTY OF THE PROPER

and the first constant constant of

contraction of the second seco

Lander has been the der commeler with

. While the service of the service o

Name: U. Manifulawel Sub: Hermal Ensineering DEO 60, 4 35425/14001 2m cogo; ME3421 DEBF : BE. WECH / [Ship rest-1 Types of Glas power cycles :-=> 0890 cycle => Diesel cycle => Dual Ocle => Biroyson cycle. SASIRIE => COWBLERZIOU LOHO; =) specific heat ratio => Turbine and Compressor esticien cres.

=> All Processes in the cicle ap reversible. => there are no Changes in in the cycle. => 100 parser que 20 8+1,CHOU (or, hoat groupston with the Surrouding 8! a) Application OF MED! is useral for MEP engine performance orssensing independent of the engine Size and is and tip de cator Of Ster enginees, Capacity

do do corter montes

Department of Mechanical Engineering

ASSIGNMENT SCHEDULE

S.No	Particulars	Target Date
1	ASSIGNMENT -I	22/4/24
2	ASSIGNMENT -D	27/5/3
3		

	Prepared by	Verified by
		\cap
Sign	JA-nung	Sond
Name	S A-Rame85	s A Ramess
	Faculty	HOD

DEPARTMENT OF MECHANICAL ENGINEERING

Assignment Question Paper

Assignment – 01			Date of Issue:	01/04/2024	Marks	10
Course code	ME3451	Course Title	Thermal Engineering			
Year	II YEAR	Semester/Section	04	Date of Submissi	on: 22/04/	2024

Q.No	Questions	CO
1	Steam turbine develops 185 kW with a consumption of 16.5 kg/kW/h. The Pressure and temperature of the steam entering the nozzle are 12 bar and 220° C. The steam leaves the nozzle at 1.2 bar. The diameter of the nozzle at throat is 7mm, Find the number of nozzles. If 8% of the total enthalpy drop is lost in friction in the diverging part of the nozzle, determine the diameter at the exit ofthe nozzle and the exit velocity of the leaving steam. Sketch the skeleton Mollier diagram and show on it the values of pressure, temperature or dryness fraction, enthalpy and specific volume at inlet, throat and exit.	COI
2	Air is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature of 300K, and a turbine temperature of 1000K. Determine the required mass flow rate of air for a net power output of 70MW, assuming both the compressor and the turbine have an isentropic efficiency of 85%.	CO2

Name and Signature of the Faculty Incharge

HoD/MECH

DEPARTMENT OF MECHANICAL ENGINEERING

Assignment Question Paper

a salini	Assignment - 02		Date of Issue:	22/04/2024	Marks	10
Course code	ME3451	Course Title	Thermal Engineering			
Year	HYLAR	Semester/Section	04	Date of Submission	: 27/05/2	2024

Q.No	Questions	CO
1	A gas turbine plant of 800 kW capacities takes the air at 1.01 bar and 15°C. The pressure ratio of the cycle is 6 and maximum temperature is limited to 700°C. A regenerator of 75% effectiveness is added in the plant to increase the overall efficiency of the plant. The pressure drop in the combustion chamber is 0.15 bars as well as in the regenerator is also 0.15 bars. Assuming the isentropic efficiency of the compressor 80% and of the turbine 85%, determine the plant thermal efficiency. Neglect the mass of the fuel.	CO3
2	The blade speed of a single ring of an impulse turbine is 300 m/s and the nozzle angle is 20°. The isentropic heat drop is 473 kJ/kg and the nozzle efficiency is 0.85. Given that the blade velocity coefficient is 0.7 and the blades are symmetrical, draw the vector diagrams and calculate for a mass flow of 1 kg/s. (i) Axial thrust on the blading (ii) Steam consumption per B.P hour if the mechanical efficiency is 90% (iii) Blade efficiency, stage efficiency and maximum blade efficiency (iv) Heat equivalent of the friction of blading.	CO4

Name and Signature of the Faculty Incharge

SA-Ramesh

HoD/MECH

DEPARTMENT OF MECHANICAL ENGINEERING

Assignment Answer Sheet

Name of the Student: V. Monice well

AU Register Number: ユ ろっ くつつつ いくのけ

Assignment - 01			Date of Issue:	01/04/2024	Marks	01
Course code	ME3451	Course Title	Thermal Engineering			
Year	II YEAR	Semester/Section	04	Date of Submissio	n: 22/04/	2024

Q.No	Questions	CO
1	Steam turbine develops 185 kW with a consumption of 16.5 kg/kW/h. The Pressure and temperature of the steam entering the nozzle are 12 bar and 220° C. The steam leaves the nozzle at 1.2 bar. The diameter of the nozzle at throat is 7mm, Find the number of nozzles. If 8% of the total enthalpy drop is lost in friction in the diverging part of the nozzle, determine the diameter at the exit ofthe nozzle and the exit velocity of the leaving steam. Sketch the skeleton Mollier diagram and show on it the values of pressure, temperature or dryness fraction, enthalpy and specific volume at inlet, throat and exit.	COI
2	Air is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature of 300K, and a turbine temperature of 1000K. Determine the required mass flow rate of air for a net power output of 70MW, assuming both the compressor and the turbine have an isentropic efficiency of 85%.	CO2

Mark Allocation

Rubrics	Marks Allocated	Marks obtained
Content Quality	6	05
Presentation Quality	2	02
Timely submission	2	02
Total marks	10	09

Name and Signature of the Faculty Incharge

HoD/MECH

omper of biber or a un good and 5 mm diameter each laid farilled re used for gower bronsmission- The ressure at discharge and 13 mainaiga onstat are used for Impa, polonnine winium maporal Bi, UET.

river Lata.

F: 21cm = 20000

D=152 ww = 0.152w

Discharge = Juba x= Jkloghlm,

B=400/m D=801.=8.8

= 1 × 10° N/m3 - 1× 10° = 113.20

J = 14-NE

NE = M- N = 801.02-713.20=178.

400 = 9.81 X 0 X 7/3.56

$$V = \frac{2}{A} = \frac{9}{10^{2}} = \frac{42}{10^{2}}$$

$$h_{f} = 45L \left(\frac{42}{10^{2}}\right)^{2} = \frac{32FL9^{2}}{29\pi^{2}b^{5}}$$

178.39 = 32 × 0.000 G8 × 5000×9 5+ J. 81 × 4,× 0.152,3

the Umper Of Bibb Abanial = 5

hree Pipes of Some longth Li nometer D, and Smichion factor of are nnected in parallel. Determine nnected in parallel pipe or length to drameter of the pipe or length and friction factor of that

Triver data"

Dianeter of Back bibe: D

friction factor of Early blibber ?

$$Sol$$

$$N_f = h_{s_1} + h_{s_2}$$

$$Q = Q_1 + Q_2 + Q_3$$

$$O = K k \Lambda = \frac{A}{2} q_{s} k \Lambda$$

$$\frac{d}{dt} = \frac{1}{\sqrt{2}}$$

Q = 1.55D

Determine the length of an equivalent pive of dianeter 20cm and friction factor b.or dora given pive summer dactor b.or dora given pive summer discharged o.1 m? (s.

1) A low line of 20cm drawn (i) Three go. bend, (= =05 111) Exposion or downer 20 to (n) + 12m give @7 300cm t=0. 01=21, bodole 4 (v Given data: 9=50cm =0,0 m 1 = 0,05 0=0.1m3/2 Sell

 $V_{1} = \frac{1}{A_{1}} = \frac{1}{1000}$

pt, = AETNO = AKO.03 X10+3.180 24 9.8140.2 299

= 3.092 m

$$100 - 0.14x17 = 0.2887 - 04$$

$$0.4324^{\circ} = 1.40.97$$
 $7 = 416.43 = 1.43.43^{\circ}$
 $0.2 = 0.5.288 \times 416.43 = 119.931$
 $0.4 = 0.432 \times 416.43 = 100 = 29.86$
 $0.4 = 0.432 \times 416.43 = 100 = 29.86$

$$9_{A} = 1 - \frac{0}{0}$$
 = $1 - \frac{0}{0}$ = $1 - \frac{0}{0}$ = $1 - \frac{0}{0}$ = $1 - \frac{0}{0}$ = $1 - \frac{0}{0}$

DEPARTMENT OF MECHANICAL ENGINEERING

Assignment Answer Sheet

Name of the Student: V. Monique and

AU Register Number: 733422 (1400)

Assignment – 02		Date of Issue:	22/04/2024	Marks	10		
	Course code	ME3451	Course Title	Thermal Engineering			
	Year	II YEAR	Semester/Section	04	Date of Submissi	ion: 27/95/2	V24

O.No	Questions	CO
1	A gas turbine plant of 800 kW capacities takes the air at 1.01 bar and 15°C. The pressure ratio of the cycle is 6 and maximum temperature is limited to 700°C. A regenerator of 75% effectiveness is added in the plant to increase the overall efficiency of the plant. The pressure drop in the combustion chamber is 0.15 bars as well as in the regenerator is also 0.15 bars. Assuming the isentropic efficiency of the compressor 80% and of the turbine 85%, determine the plant thermal efficiency. Neglect the mass of the fuel.	CO3
2	The blade speed of a single ring of an impulse turbine is 300 m/s and the nozzle angle is 20°. The isentropic heat drop is 473 kJ/kg and the nozzle efficiency is 0.85. Given that the blade velocity coefficient is 0.7 and the blades are symmetrical, draw the vector diagrams and calculate for a mass flow of 1 kg/s. (i) Axial thrust on the blading (ii) Steam consumption per B.P hour if the mechanical efficiency is 90% (iii) Blade efficiency, stage efficiency and maximum blade efficiency (iv) Heat equivalent of the friction of blading.	CO4

Mark Allocation

Rubrics	Marks Allocated	Marks obtained
Content Quality	6	06
Presentation Quality	2	0
Timely submission	2	02
Total marks	10	09

S.A. W.

Name and Signature of the Faculty Incharge

3. Alaneth

HoD/MECH

A gas occupies or 3m3 of 3 ban It
executes a she censisting of a fraces,

(i) (.2: constant pressure with work interestion
or (5 (2) (2) 2.3: (ompression process which
sollows the Jaw Pr = contant and use in (1)3.1:
constant volume 8 racess and change internal
ensity 1.5 yokes who therefore (house in
tend PE. Draw Pr diagram for
the cycle. Also show
transfer for the cycle. Also show
that sisk law is obeyed by the cycle.

Miser data!

N, = 0,3m3

61 = 3 par = 300 /ch(W, = 60

wi.2 =15105

P1 = 750 thornal

U3=U2

intervay 6 verson = no -no = doins

for sind bw

$$m^{3-3} = 500 (0.342) y^{2} (0.342)$$

$$h^{3-3} = 6. h^{3} y^{2} (0.342)$$

$$h^{3-3} = 6. h^{3} y^{2} (0.342)$$

$$h^{3-3} = 6. h^{3} y^{2} (0.342)$$

$$500005 = 12$$

 $12 = 30000 = -90$
 $12 = 3000 = -90$

$$w_{2-3} = -16.74162$$
 $w_{2-3} = -16.74162$
 $w_{3-3} = -16.74162$

Weynork trail gorman

$$U_{1=2}=U_{2}-U_{1}$$

ひっこりゃ

N1-40=40

anet -01,2 + 05-3 +03-1

=-25-16.74+40

anel = -1.7412

21.27 your gramo grande 1.2 bill

cod mass added to the part con moss added to the part of most of most

Cv = 0, 7, 10 /1081-

Windu ;

0:0

Visle

W1213

P1=20 ban

$$L' = 200 = 200 = 2000$$

$$L' = 200 = 200 = 200$$

$$L' = 200 = 200 = 200$$

$$L' = 200$$

$$L' = 200 = 200$$

$$L' = 200$$

```
worn -wirr - (wo-with 1:00
  U: CT
m, Cutim, Cuti - (mo-m) Septu = 0
5-4252 (0.47) Le -12 (0.47) (353) - (5/4)
17/99.75-3439.95-1/8308932.75-510
 8.014.02 = 8308635.12
                TI
  LNS = 54552
   W5 = 52.11 12
  No-W'= 52.11-12
   mo cu = 10,14 10
```

An insulated risid dans with zero ene like or brdroson at 2731e is adiablically compressed to one half or 121 initial volume. Find the Chanse in semprature or the gas it the ration of the specific heat or hudrosen is 1.4.

 $\lambda = 1.4$ $\lambda = 1.4$

72-7,

 $\frac{5011!}{72} = (\frac{1}{100})^{1/1} = (\frac{1}{200})^{1/1} = (\frac{1}{200$

15:300.53

T2-T, = 27.2314

ME3451 Thermal Engineering Important questions

Unit 1

PART A

- 1. What is meant by cut-off ratio?
- 2. Draw the P-V and T-S diagram for otto cycle.
- 3. What are the assumptions made for air standard cycle analysis?
- 4. Define mean effective pressure as applied to gas power cycles.
- 5. What is the effect of compression ratio on efficiency of otto cycle?
- 6. Draw the actual and theoretical P-V diagram for four stroke cycle SI engine.
- 7. Mention the various processes of dual cycle.
- 8. For the same compression ratio and heat supplied, state the order of decreasing air standard efficiency of Otto, diesel and dual cycle.
- 9. What are the effects of reheat cycle?
- 10. What is thermodynamic cycle?
- 11. What is a thermodynamic cycle?
- 12. What is meant by air standard cycle?
- 13. Name the various "gas power cycles".
- 14. What are the assumptions made for air standard cycle analysis
- 15. Mention the various processes of the Otto cycle.
- 16. Mention the various processes of diesel cycle.
- 17. Mention the various processes of dual cycle.
- 18. Define air standard cycle efficiency.
- 19. Define mean effective pressure as applied to gas power cycles. How it is related to indicate power of an I.C engine.
- 20. Define the following terms. (i) Compression ratio (ii) Cut off ratio, (iii) .Expansion ratio

PART B

- 1. Drive and expression for the air standard efficiency of Otto cycle in terms of volume ratio.
- Drive an expression for the air standard efficiency of Diesel cycle.
- 3. Drive an expression for the air standard efficiency of Dual cycle.
- 4. Explain the working of 4 stroke cycle Diesel engine. Draw the theoretical and actual PV diagram.
- 5. Drive the expression for air standard efficiency of Brayton cycle in terms of pressure ratio.
- 6. A Dual combustion air standard cycle has a compression ratio of 10. The constant pressure part of combustion takes place at 40 bar. The highest and the lowest temperature of the cycle are 1725degree C and 27 0 C respectively. The pressure at the beginning of compression is 1 bar. Calculate (i) the pressure and temperature at' key points of the cycle. (ii) The heat supplied at constant volume, (iii) the heat supplied at constant pressure. (iv) The heat rejected. (v) The work output. (vi) The efficiency and (vii) mep.
- 7. An Engine-working on Otto cycle has a volume of 0.45 m3, pressure 1 bar and temperature 30o, Cat the beginning of compression stroke. At the end of compression stroke, the pressure is 11 barand 210 KJ of heat is added at constant volume. Determine (i) Pressure, temperature and volumes at salient points in the cycle.' (ii) Efficiency.
- 8. Explain the working of 4-stroke cycle Diesel engine. Draw the theoretical and actual valve- timing diagram for the engine. Explain the reasons for the difference.
- 9. Air enters the compressor of a gas turbine at 100 KPa and 25 o C. For a pressure ratio of 5 and a maximum temperature of 850°C. Determine the thermal efficiency using the Brayton cycle.
- 10. The following data in referred for an air standard diesel cycle compression ratio = 15 heat added= 200 Kj/Kg- minimum temperature in the cycle = 25°C Suction pressure = 1 bar Calculate 1. Pressure and temperature at the Salient point. 2. Thermal efficiency 3. Mean effective pressure, 4. Power output of the cycle, if flow rate 'of air is 2 Kg/s
- 11. A Dual combustion air standard cycle has a compression ratio of 10. The constant pressure part of combustion takes place at 40 bar. The highest and the lowest temperature of the cycle are 1727° C and 27° C respectivety. The pressure at the beginning of compression is 1 bar. Calculate- (i) The pressure and temperature at key points of the cycle. (ii) The heat supplied at constant volume, (iii) The heat supplied at constant pressure (iv) The heat rejected (v) The Work output, (vi) The efficiency and (vii) Mean effective pressure.
- 12. An Engine working on Otto cycle has a volume of 0.45 m3, pressure 1 bar and Temperature 30Oc, at the beginning of compression stroke. At the end of Compression stroke, the pressure is 11 bar and 210 KJ of heat is added at constant Volume. Determine i. Pressure, temperature and volumes at salient points in the cycle. ii, Efficiency.

Unit 3 & 4

PART A

- 1. Classify IC engine according to cycle of lubrication system and field of application.
- 2. Types of lubrication system
- 3. List the various components of IC engines.
- 4. Name the basic thermodynamic cycles of the two types of internal combustion reciprocating engines.
- 5. Mention the important requites of liner material.
- 6. State the purpose of providing piston in IC engines.
- 7. Define the terms as applied to reciprocating I.C. engines "Mean effective pressure" and "Compression ratio".
- 8. What is meant by highest useful compression ratio?
- 9. What are the types of piston rings?
- 10. What is the use of connecting rod?
- 11. What is the use of flywheel?
- 12. Which factor increases detonation in IC engines?
- 13. Which factor do not have much influence in detonation?
- 14. For maximum power, air-fuel ratio should be?
- 15. For maximum economy, air-fuel ratio should be?
- 16. For maximum power we need is?
- 17. Cold starting required?
- 18. Knock in SI engine can be reduced by
- 19. In 2-stroke engines wich two strokes are eliminated?
- 20. Which efficiency will reduce if fresh charge filled is reduced?
- 21. SFC decreases as power capacity of engine?
- 22. What about the NOx emission when the compression ratio decreases?
- 23. Methods used for preparing bio-diesel?
- 24. Nox, Sox, HC can be determined by?
- 25. What is blending of fuel?
- 26. Is hydrogen fuel is storable?

PART B

- 1. Explain full pressure lubrication system I.C Engine.
- 2. Explain the water cooling system in I.C Engine.
- 3. Explain the 2 types of Ignition system In S.I Engine.
- 4. Draw and explain the valve timing diagram of 4 strokes Diesel Engine.
- 5. Draw and explain the port timing diagram of 2stroke Petrol Engine.
- 6. Explain with neat sketch the exhaust gas analysis.
- 7. The following results refer to a test on a petrol engine Indicated power = 30 Kw, Brake power = 26 Kw, Engine speed = 1000 rpm Fuel brake power/ hour = 0.35 kg Calorific value of fuel = 43900kj/kg. Calculate the indicated Thermal efficiency, the brake Thermal efficiency and Mechanical efficiency
- 8. A four cylinder 2 stroke cycle petrol engine develops 23.5 kw brake power at 2500 rpm. The mean effective pressure on each piston in 8.5 bar and mechanical efficiency in 85%

EnggTree.com

Reg. No. : E N G G T R E E . C O M

Question Paper Code: 30257

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Fourth Semester

Mechanical Engineering

For More Visit our Website EnggTree.com

ME 3451 - THERMAL ENGINEERING

(Common to: Mechanical Engineering (Sandwich))

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A - (10 × 2 = 20 marks)

- 1. Discuss the effect of cut-off ratio on diesel cycle in thermal efficiency values.
- List out all cold air assumption of air standard cycles?
- 3. Define metastable state and degree of super saturation in steam nozzles.
- 4. What is the significance of the critical pressure ratio on discharge through the steam nozzle?
- 5. Compare the open cycle gas turbine and closed cycle gas turbine
- 6. List out the methods of improving the performance of gas turbine power plant.
- 7. What do understand by stoichiometric, rich and lean mixture?
- 8. Represent the various stages of combustion of CI engine in pressure and crank angle diagram.
- 9. Battery coil ignition system is preferred in most of the automobiles justify this statement.
- 10. How do you avoid the overheating, and over cooling of the internal combustion engines?

EnggTree.com

PART B - (5 × 13 = 65 marks)

 (a) For the same compression ratio, prove that the efficiency of the Otto cycle is greater than that of the diesel cycle.

Or

- (b) In an air standard diesel cycle with a compression ratio of 14, the condition of air at the start of the compression stroke are 1 bar and 300 K. After addition of heat at constant pressure, the temperature rises to 2775 K. Determine the thermal efficiency of the cycle, network done per kg of air.
- 12. (a) Calculate the critical pressure ratio and throat area per unit mass flow rate of steam, expanding through a convergent-divergent steam nozzle from 10 bar, dry saturated down to atmospheric pressure of 1 bar. Assume that the inlet velocity is negligible and that the expansion is isentropic.

Or

- (b) A nozzle is to be designed to expand steam at the rate of 0.1 kg/sec from 500 kPa, 210°C to 100 kPa. Neglect the inlet velocity of steam. For a nozzle efficiency of 0.9, determine the exit area of the nozzle.
- 13. (a) In a gas turbine power plant, air enters the compressor at 15°C and it is compressed through a pressure ratio of 4 with isentropic efficiency of 85%. The air-fuel ratio is 80 and the calorific value of the fuel is 42,000 kJ/kg. The turbine inlet temperature is 1000 K and the isentropic efficiency of the turbine is 82%. Find the overall plant efficiency.

Or

- (b) Explain the concept of advanced techniques adapted in gas turbine power plant with neat line schematic diagram. Also represent the cycle in all P-v, T-s and h-s diagrams. Give merits of the advance techniques.
- 14. (a) Define the detonation. Give its effects on Spark Ignition Engines.

Or

(b) Explain the working principle of simple carburetor with neat sketch. Give its limitations.

EnggTree.com

15. (a) A full load test was conducted on a two stroke engine and the following results were obtained:

Speed of engine = 500 rpm; Brake load = 500 N; Air /fuel ratio 30; oil consumption = 5kg/hr; Room temperature = 25°C; Atmospheric pressure = 1 bar; diameter of cylinder = 22cm; stroke length 28cm; Brake diameter = 1.6m. Calculate the volumetric efficiency and brake specific fuel consumption.

Or

(b) The following results refer to at test on a four stroke petrol engine:

The diameter of the cylinder is 30 cm and stroke length of the piston is 45 cm. The Engine runs at the speed of 1000 rpm. The brake specific fuel consumption is 0.35 kg/kWh. The calorific value of the fuel is 43,900 kJ/kg. The indicated mean effective pressure is 540 kPa. Calculate the following:

- (i) Indicated thermal efficiency
- (ii) Brake thermal efficiency
- (iii) Mechanical efficiency

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Two engines are operated in ideal Otto and diesel cycles for which the following information are available:

Maximum temperature = 1227°C agg Tree com

Exhaust temperature = 447°C

Ambient condition = 1.013 bar and 35°C

Air consumption = 2 kg/min

Estimate the following:

- (i) Compression ratio
- (ii) Air standard efficiency
- (iii) Power output

Or

- (b) An ideal regenerative steam cycle operates with the steam entering the turbine at 30 bar and 500°C and is exhausted at 0.1 bar. A feed water heater is used which operates at 5 bar. Calculate the following:
 - (i) The thermal efficiency
 - (ii) Steam rate of the cycle
 - (iii) Increase in average temperature of heat addition
 - (iv) Compare the values of thermal efficiency and steam rate with ideal Rankine cycle

30257

	mig
Reg. No.:	entrage of
	. 5

Question Paper Code: 21297

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023

Fourth Semester

Mechanical Engineering

ME 3451 — THERMAL ENGINEERING

(Common to Mechanical Engineering (Sandwich))

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. What is air standard cycle?
- 2. Draw the P-V and T-S diagram for ideal dual combustion cycle.
- 3. What do you mean by meta stable flow in steam nozzles?
- 4. What are the applications of convergence divergence nozzle?
- 5. Is it always useful to have a regenerator in a gas turbine power cycle. Why?
- 6. Write about dryness fraction of wet steam.
- Comment on firing order of a multi-cylinder engine. How it is significant?
- 8. Draw the ideal and actual value-timing diagrams for a 4 stroke diesel engine.
- 9. What do you understand by the terms naturally aspirated and turbocharged in an engine?
- 10. Why emission testing is required in terms of performance evaluation of internal combustion engines?

PART B — $(5 \times 13 = 65 \text{ marks})$

- (a) The maximum pressure and temperature in an Otto cycle are 10 kPa and 27°C. The amount of heat added to the air per cycle is 1500 kJ/kg.
 - (i) Determine the pressure and temperatures and pressures at all points of the air standard Otto cycle.
 - (ii) Calculate the specific work and thermal efficiency of the cycle for a compression ratio of 8:1.

Take for air : $C_v = 0.72~\mathrm{kJ/kgK}$ and $\gamma \!=\! 1.4$.

Or

- (b) In an engine working on Dual cycle, the temperature and pressure at the beginning of the cycle are 90°C and 1 bar respectively. The compression ratio is 9.2. The maximum pressure is limited to 68 bar and total heat supplied per kg of air is 1750 kJ. Calculate:
 - (i) Pressure and temperature at all salient points
 - (ii) Air standard efficiency
 - (iii) Mean effective pressure.
- 12. (a) Steam at a pressure of 10.5 bar and 0.95 dry is expanded through a convergent divergent nozzle. The pressure of steam leaving the nozzle is 0.85 bar. Find the velocity of steam at the throat for maximum discharge. Take n = 1.135. Also find the area at the exit and steam discharge if the throat area is 1.2 cm². Assume flow is isentropic and there are no friction losses.

Or

- (b) Brief the following in case of steam nozzles:
 - (i) Critical pressure ratio
 - (ii) Effect of friction
 - (iii) Metastable flow and its effect.
- 13. (a) The gas turbine has an overall pressure ratio of 5:1 and the maximum cycle temperature is 550°C. The turbine drives the compressor and an electric generator, the mechanical efficiency of the drive being 97%. The ambient temperature is 20 he turbine drives the compressor and an electric 20°C and the isentropic efficiencies for the compressor and the turbine are 0.8 and 0.83 respectively. Calculate the power output in megawatts for an air flow of 15 kg/s. Also calculate the thermal efficiency and work ratio.

Neglect the changes in kinetic energy and loss of pressure in combustion chamber.

Or

- (b) A steam power plant operates on an ideal reheat Rankine cycle between the pressure limits of 15 MPa and 10 kPa. The mass flow rate of steam through the cycle is 12kg/s. Steam enters both stages of the turbine at 500°C If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed 10%, determine the following.
 - (i) Reheat pressure
 - (ii) Heat input to the Boiler
 - (iii) Thermal efficiency of the cycle.

Represent the cycle on T-s diagram.

14. (a) What do you mean by knocking? Describe the phenomenon of knocking in SI engine. What are the factors affect the knocking? How can it be controlled?

Or

- (b) Explain the different types of combustion chambers used in CI engines.
- 15. (a) A six cylinder, gasoline engine operates on the four stroke cycle. The bore of each cylinder is 80 mm and the stroke is 100 mm. The clearance volume per cylinder is 70 cc. At the speed of 4100 rpm, the fuel consumption is 5.5 gm/sec and the torque developed is 160 Nm. Calculate:
 - (i) Brake power
 - (ii) Brake mean effective pressure
 - (iii) Brake thermal efficiency if the calorific value of the fuel is 44000 kJ/kg and
 - (iv) Relative efficiency on a brake power basis assuming the engine works on the constant volume cycle $\gamma = 1.4$ for air.

Or

- (b) During the trial of a four stoke, single cylinder, oil engine the following observations were recorded: bore = 300 mm. stroke = 400 mm, speed = 200 rpm, duration of trial = 60 minutes. fuel consumption = 7.050 kg. calorific value = 14000 kJ/kg, area of indicator diagram = 322 mm², length of indicator diagram = 62 mm, spring index = 1.1 bar/mm, dead load on the brake drum = 140 kg, spring balance reading = 5 kg, brake drum diameter =1600 mm, total weight of cooling water = 495 kg, temperature rise of cooling water = 38°C, temperature of exhaust gases = 300°C, air consumption = 311 kg, specific heat of exhaust gases = 1.004 kJ/kg K, specific heat of water = 4.186 kJ/kg K; room temperature = 20°C. Determine
 - (i) Brake power
 - (ii) Indicated power
 - (iii) Mechanical efficiency
 - (iv) Indicated thermal efficiency

PART C — $(1 \times 15 = 15 \text{ marks})$

16 (a) Explain normal and abnormal combustion in IC engines. List the factors affecting knocking phenomenon.

Or

(b) Write about scenarios of rich and lean mixture of as 4-storke IC engine, when the vehicle is travel from plain region to hilly region with clear pictures of fuel-air mixture.

CONTENT BEYOND SYLABUS

Generation of Motive Power was the Mother of Heat Exchanger Invention

The Role of Hxs in the 21st Century

Heat exchangers serve a straightforward purpose: controlling a system's or substance's temperature by adding or removing thermal energy.

Devices for Energy Mediation in Thermal Engineering

- A Device to facilitate transfer of energy by using an action called Heat or Heat transfer.
- · Enhances the value of Fuel energy.
- · Facilitates energy conservation in any industry.
- · A great tool for control of thermal environment
- · A Good Heat Exchanger is a True Mediator.

The Aelopile

 In 130BC. Hero, a Greek mathematician and scientist is credited with inventing the first practical application of steam power, the aelopile.

Branca's Steam Turbine

• In 1629, Giovanni Branca, of the Italian town of Loretto, described, in a work' published at Rome, a number of ingenious contrivances.

No Recognition to these Boilers as a Heat Exchanger

Creativity without science is very Costly !!!?!?!?

- •The first real advancement in heat exchanger came about with the invention of the Plain Cylinder Botler
- *It was a sumple design and easily constructed.
- As its name implies, the Plain Cylinder Boiler is a long metal cylinder with conical (round) ends set horizontally in a brick work
- ·Some of these boilers were 40 feet long